calcenergy.cl 29.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

lvs's avatar
lvs committed
24
//#define DEBUG_ENERGY_KERNEL
25

26
#include "calcenergy_basic.h"
Leonardo Solis's avatar
Leonardo Solis committed
27

lvs's avatar
lvs committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
typedef struct
{
       float atom_charges_const[MAX_NUM_OF_ATOMS];
       char  atom_types_const  [MAX_NUM_OF_ATOMS];
} kernelconstant_interintra;

typedef struct
{
       char  intraE_contributors_const[3*MAX_INTRAE_CONTRIBUTORS];
} kernelconstant_intracontrib;

typedef struct
{
       float reqm_const [ATYPE_NUM];
       float reqm_hbond_const [ATYPE_NUM];
       unsigned int  atom1_types_reqm_const [ATYPE_NUM];
       unsigned int  atom2_types_reqm_const [ATYPE_NUM];
       float VWpars_AC_const   [MAX_NUM_OF_ATYPES*MAX_NUM_OF_ATYPES];
       float VWpars_BD_const   [MAX_NUM_OF_ATYPES*MAX_NUM_OF_ATYPES];
       float dspars_S_const    [MAX_NUM_OF_ATYPES];
       float dspars_V_const    [MAX_NUM_OF_ATYPES];
} kernelconstant_intra;

typedef struct
{
       int   rotlist_const     [MAX_NUM_OF_ROTATIONS];
} kernelconstant_rotlist;

typedef struct
{
       float ref_coords_x_const[MAX_NUM_OF_ATOMS];
       float ref_coords_y_const[MAX_NUM_OF_ATOMS];
       float ref_coords_z_const[MAX_NUM_OF_ATOMS];
       float rotbonds_moving_vectors_const[3*MAX_NUM_OF_ROTBONDS];
       float rotbonds_unit_vectors_const  [3*MAX_NUM_OF_ROTBONDS];
       float ref_orientation_quats_const  [4*MAX_NUM_OF_RUNS];
} kernelconstant_conform;

Leonardo Solis's avatar
Leonardo Solis committed
66
67
// All related pragmas are in defines.h (accesible by host and device code)

68
69
70
71
72
73
void gpu_calc_energy(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
74
75
76
								    		// g1 = gridsize_x
				uint   dockpars_gridsize_x_times_y, 		// g2 = gridsize_x * gridsize_y
				uint   dockpars_gridsize_x_times_y_times_z,	// g3 = gridsize_x * gridsize_y * gridsize_z
77
78
79
80
81
82
83
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
lvs's avatar
lvs committed
84
				float  dockpars_smooth,
Leonardo Solis's avatar
Leonardo Solis committed
85

86
87
88
89
                    // Some OpenCL compilers don't allow declaring 
		    // local variables within non-kernel functions.
		    // These local variables must be declared in a kernel, 
		    // and then passed to non-kernel functions.
90
91
92
93
94
95
96
97
98
		    	__local float* genotype,
		   	__local float* energy,
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,
		    	__local float* partial_energies,

lvs's avatar
lvs committed
99
			#if defined (DEBUG_ENERGY_KERNEL)
100
101
102
			__local float* partial_interE,
			__local float* partial_intraE,
			#endif
lvs's avatar
lvs committed
103
104
105
#if 0
 				bool   debug,
#endif
lvs's avatar
lvs committed
106
107
108
109
110
		   __constant     kernelconstant_interintra* 		kerconst_interintra,
		   __global const kernelconstant_intracontrib*  	kerconst_intracontrib,
		   __constant     kernelconstant_intra*			kerconst_intra,
		   __constant     kernelconstant_rotlist*   		kerconst_rotlist,
		   __constant     kernelconstant_conform*		kerconst_conform
Leonardo Solis's avatar
Leonardo Solis committed
111
112
113
114
115
116
117
118
119
)

//The GPU device function calculates the energy of the entity described by genotype, dockpars and the liganddata
//arrays in constant memory and returns it in the energy parameter. The parameter run_id has to be equal to the ID
//of the run whose population includes the current entity (which can be determined with blockIdx.x), since this
//determines which reference orientation should be used.
{
	partial_energies[get_local_id(0)] = 0.0f;

lvs's avatar
lvs committed
120
	#if defined (DEBUG_ENERGY_KERNEL)
121
122
123
124
	partial_interE[get_local_id(0)] = 0.0f;
	partial_intraE[get_local_id(0)] = 0.0f;
	#endif

125
126
127
128
129
130
131
132
133
134
135
	// Convert orientation genes from sex. to radians
	float phi         = genotype[3] * DEG_TO_RAD;
	float theta       = genotype[4] * DEG_TO_RAD;
	float genrotangle = genotype[5] * DEG_TO_RAD;

	float genrot_unitvec [3];
	float sin_angle = native_sin(theta);
	genrot_unitvec [0] = sin_angle*native_cos(phi);
	genrot_unitvec [1] = sin_angle*native_sin(phi);
	genrot_unitvec [2] = native_cos(theta);

136
	uchar g1 = dockpars_gridsize_x;
lvs's avatar
lvs committed
137
138
	uint  g2 = dockpars_gridsize_x_times_y;
  	uint  g3 = dockpars_gridsize_x_times_y_times_z;
139

Leonardo Solis's avatar
Leonardo Solis committed
140
	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
141
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
Leonardo Solis's avatar
Leonardo Solis committed
142
	// ================================================
143
144
145
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
Leonardo Solis's avatar
Leonardo Solis committed
146
	{
lvs's avatar
lvs committed
147
		int rotation_list_element = kerconst_rotlist->rotlist_const[rotation_counter];
Leonardo Solis's avatar
Leonardo Solis committed
148

149
		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
Leonardo Solis's avatar
Leonardo Solis committed
150
		{
151
152
153
154
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];
Leonardo Solis's avatar
Leonardo Solis committed
155

156
			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
Leonardo Solis's avatar
Leonardo Solis committed
157
			{
lvs's avatar
lvs committed
158
159
160
				atom_to_rotate[0] = kerconst_conform->ref_coords_x_const[atom_id];
				atom_to_rotate[1] = kerconst_conform->ref_coords_y_const[atom_id];
				atom_to_rotate[2] = kerconst_conform->ref_coords_z_const[atom_id];
Leonardo Solis's avatar
Leonardo Solis committed
161
162
163
164
165
166
167
168
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

169
			// Capturing rotation vectors and angle
170
			float rotation_unitvec[3];
171
			float rotation_movingvec[3];
172
			float rotation_angle;
173
174
175
176
177

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
Leonardo Solis's avatar
Leonardo Solis committed
178
			{
179
180
181
				rotation_unitvec[0] = genrot_unitvec[0];
				rotation_unitvec[1] = genrot_unitvec[1];
				rotation_unitvec[2] = genrot_unitvec[2];
182

Leonardo Solis's avatar
Leonardo Solis committed
183
184
185
				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
186
187

				rotation_angle = genrotangle;
Leonardo Solis's avatar
Leonardo Solis committed
188
			}
189
			else	// If rotating around rotatable bond
Leonardo Solis's avatar
Leonardo Solis committed
190
			{
191
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;
Leonardo Solis's avatar
Leonardo Solis committed
192

lvs's avatar
lvs committed
193
194
195
				rotation_unitvec[0] = kerconst_conform->rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = kerconst_conform->rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = kerconst_conform->rotbonds_unit_vectors_const[3*rotbond_id+2];
196
				
lvs's avatar
lvs committed
197
198
199
				rotation_movingvec[0] = kerconst_conform->rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = kerconst_conform->rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = kerconst_conform->rotbonds_moving_vectors_const[3*rotbond_id+2];
Leonardo Solis's avatar
Leonardo Solis committed
200

201
202
				rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;

203
204
				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
Leonardo Solis's avatar
Leonardo Solis committed
205
206
207
208
209
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];
			}

210
211
212
213
214
215
216
217
			// Transforming orientation and torsion angles into quaternions
			rotation_angle  = rotation_angle * 0.5f;
			float sin_angle = native_sin(rotation_angle);
			quatrot_left_q  = native_cos(rotation_angle);
			quatrot_left_x  = sin_angle*rotation_unitvec[0];
			quatrot_left_y  = sin_angle*rotation_unitvec[1];
			quatrot_left_z  = sin_angle*rotation_unitvec[2];

218
219
220
221
			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
Leonardo Solis's avatar
Leonardo Solis committed
222
			{
223
224
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
Leonardo Solis's avatar
Leonardo Solis committed
225
226
227
228
229
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

lvs's avatar
lvs committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
				quatrot_left_q = quatrot_temp_q*kerconst_conform->ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+1]+
						 kerconst_conform->ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+3]-
						 kerconst_conform->ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+2]+
						 kerconst_conform->ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 kerconst_conform->ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+3]+
						 kerconst_conform->ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*kerconst_conform->ref_orientation_quats_const[4*(*run_id)+2]-
						 kerconst_conform->ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
Leonardo Solis's avatar
Leonardo Solis committed
246
247
248
			}

			quatrot_temp_q = 0 -
249
250
251
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
Leonardo Solis's avatar
Leonardo Solis committed
252
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
253
254
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
Leonardo Solis's avatar
Leonardo Solis committed
255
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
256
257
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
Leonardo Solis's avatar
Leonardo Solis committed
258
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
259
260
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];
Leonardo Solis's avatar
Leonardo Solis committed
261
262

			atom_to_rotate [0] = 0 -
263
264
265
266
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
Leonardo Solis's avatar
Leonardo Solis committed
267
			atom_to_rotate [1] = 0 -
268
269
270
271
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
Leonardo Solis's avatar
Leonardo Solis committed
272
			atom_to_rotate [2] = 0 -
273
274
275
276
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;
Leonardo Solis's avatar
Leonardo Solis committed
277

278
			// Performing final movement and storing values
Leonardo Solis's avatar
Leonardo Solis committed
279
280
281
282
283
284
285
286
287
288
289
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
290
	// CALCULATING INTERMOLECULAR ENERGY
Leonardo Solis's avatar
Leonardo Solis committed
291
	// ================================================
292
293
294
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
Leonardo Solis's avatar
Leonardo Solis committed
295
	{
lvs's avatar
lvs committed
296
		uint atom_typeid = kerconst_interintra->atom_types_const[atom_id];
297
298
299
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
lvs's avatar
lvs committed
300
		float q = kerconst_interintra->atom_charges_const[atom_id];
Leonardo Solis's avatar
Leonardo Solis committed
301
302

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
303
304
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
Leonardo Solis's avatar
Leonardo Solis committed
305
			partial_energies[get_local_id(0)] += 16777216.0f; //100000.0f;
306
	
lvs's avatar
lvs committed
307
			#if defined (DEBUG_ENERGY_KERNEL)
308
309
			partial_interE[get_local_id(0)] += 16777216.0f;
			#endif
Leonardo Solis's avatar
Leonardo Solis committed
310
311
312
		}
		else
		{
Leonardo Solis's avatar
Leonardo Solis committed
313
			// Getting coordinates
314
315
316
317
318
319
320
321
322
323
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

Leonardo Solis's avatar
Leonardo Solis committed
324
			// Calculating interpolation weights
325
			float weights[2][2][2];
Leonardo Solis's avatar
Leonardo Solis committed
326
327
328
329
330
331
332
333
334
			weights [0][0][0] = (1-dx)*(1-dy)*(1-dz);
			weights [1][0][0] = dx*(1-dy)*(1-dz);
			weights [0][1][0] = (1-dx)*dy*(1-dz);
			weights [1][1][0] = dx*dy*(1-dz);
			weights [0][0][1] = (1-dx)*(1-dy)*dz;
			weights [1][0][1] = dx*(1-dy)*dz;
			weights [0][1][1] = (1-dx)*dy*dz;
			weights [1][1][1] = dx*dy*dz;

Leonardo Solis's avatar
Leonardo Solis committed
335
			// Capturing affinity values
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);
Leonardo Solis's avatar
Leonardo Solis committed
362

Leonardo Solis's avatar
Leonardo Solis committed
363
			// Calculating affinity energy
Leonardo Solis's avatar
Leonardo Solis committed
364
365
			partial_energies[get_local_id(0)] += TRILININTERPOL(cube, weights);

lvs's avatar
lvs committed
366
			#if defined (DEBUG_ENERGY_KERNEL)
367
368
369
			partial_interE[get_local_id(0)] += TRILININTERPOL(cube, weights);
			#endif

Leonardo Solis's avatar
Leonardo Solis committed
370
			// Capturing electrostatic values
371
			atom_typeid = dockpars_num_of_atypes;
Leonardo Solis's avatar
Leonardo Solis committed
372

373
374
375
376
377
378
379
380
381
			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);
382
383

			// Calculating electrostatic energy
Leonardo Solis's avatar
Leonardo Solis committed
384
385
			partial_energies[get_local_id(0)] += q * TRILININTERPOL(cube, weights);

lvs's avatar
lvs committed
386
			#if defined (DEBUG_ENERGY_KERNEL)
387
388
389
			partial_interE[get_local_id(0)] += q * TRILININTERPOL(cube, weights);
			#endif

Leonardo Solis's avatar
Leonardo Solis committed
390
			// Capturing desolvation values
391
			atom_typeid = dockpars_num_of_atypes+1;
Leonardo Solis's avatar
Leonardo Solis committed
392

393
394
395
396
397
398
399
400
401
			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);
Leonardo Solis's avatar
Leonardo Solis committed
402

Leonardo Solis's avatar
Leonardo Solis committed
403
			// Calculating desolvation energy
Leonardo Solis's avatar
Leonardo Solis committed
404
			partial_energies[get_local_id(0)] += fabs(q) * TRILININTERPOL(cube, weights);
405

lvs's avatar
lvs committed
406
			#if defined (DEBUG_ENERGY_KERNEL)
407
408
			partial_interE[get_local_id(0)] += fabs(q) * TRILININTERPOL(cube, weights);
			#endif
Leonardo Solis's avatar
Leonardo Solis committed
409
410
		}

411
	} // End atom_id for-loop (INTERMOLECULAR ENERGY)
Leonardo Solis's avatar
Leonardo Solis committed
412

413

lvs's avatar
lvs committed
414
	#if defined (DEBUG_ENERGY_KERNEL)
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
	barrier(CLK_LOCAL_MEM_FENCE);

	if (get_local_id(0) == 0)
	{
		float energy_interE = partial_interE[0];

		for (uint contributor_counter=1;
		          contributor_counter<NUM_OF_THREADS_PER_BLOCK;
		          contributor_counter++)
		{
			energy_interE += partial_interE[contributor_counter];
		}
		partial_interE[0] = energy_interE;
		//printf("%-20s %-10.8f\n", "energy_interE: ", energy_interE);
	}

	barrier(CLK_LOCAL_MEM_FENCE);
	#endif


Leonardo Solis's avatar
Leonardo Solis committed
435
436
	// In paper: intermolecular and internal energy calculation
	// are independent from each other, -> NO BARRIER NEEDED
437
  	// but require different operations,
Leonardo Solis's avatar
Leonardo Solis committed
438
439
440
	// thus, they can be executed only sequentially on the GPU.

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
441
	// CALCULATING INTRAMOLECULAR ENERGY
Leonardo Solis's avatar
Leonardo Solis committed
442
	// ================================================
443
444
445
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
	          contributor_counter +=NUM_OF_THREADS_PER_BLOCK)
lvs's avatar
lvs committed
446
447
448
449
450
451
452

#if 0
if (get_local_id (0) == 0) {
	for (uint contributor_counter = 0;
	          contributor_counter < dockpars_num_of_intraE_contributors;
	          contributor_counter ++)
#endif
Leonardo Solis's avatar
Leonardo Solis committed
453
	{
lvs's avatar
lvs committed
454
455
456
457
458
459
460
461
462
463
#if 0
		// Only for testing smoothing
		float smoothed_intraE = 0.0f;

		float raw_intraE_vdw_hb = 0.0f;
		float raw_intraE_el     = 0.0f;
		float raw_intraE_sol    = 0.0f;
		float raw_intraE        = 0.0f;
#endif

Leonardo Solis's avatar
Leonardo Solis committed
464
		// Getting atom IDs
lvs's avatar
lvs committed
465
466
		uint atom1_id = kerconst_intracontrib->intraE_contributors_const[3*contributor_counter];
		uint atom2_id = kerconst_intracontrib->intraE_contributors_const[3*contributor_counter+1];
Leonardo Solis's avatar
Leonardo Solis committed
467

468
469
470
471
472
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
Leonardo Solis's avatar
Leonardo Solis committed
473

Leonardo Solis's avatar
Leonardo Solis committed
474
		// Calculating atomic_distance
475
		float atomic_distance = native_sqrt(subx*subx + suby*suby + subz*subz)*dockpars_grid_spacing;
Leonardo Solis's avatar
Leonardo Solis committed
476

lvs's avatar
lvs committed
477
		// Getting type IDs
lvs's avatar
lvs committed
478
479
		uint atom1_typeid = kerconst_interintra->atom_types_const[atom1_id];
		uint atom2_typeid = kerconst_interintra->atom_types_const[atom2_id];
Leonardo Solis's avatar
Leonardo Solis committed
480

lvs's avatar
lvs committed
481
482
		uint atom1_type_vdw_hb = kerconst_intra->atom1_types_reqm_const [atom1_typeid];
     	        uint atom2_type_vdw_hb = kerconst_intra->atom2_types_reqm_const [atom2_typeid];
lvs's avatar
lvs committed
483

lvs's avatar
lvs committed
484
485
486
487
488
489
		// Getting optimum pair distance (opt_distance) from reqm and reqm_hbond
		// reqm: equilibrium internuclear separation 
		//       (sum of the vdW radii of two like atoms (A)) in the case of vdW
		// reqm_hbond: equilibrium internuclear separation
		//  	 (sum of the vdW radii of two like atoms (A)) in the case of hbond 
		float opt_distance;
lvs's avatar
lvs committed
490

lvs's avatar
lvs committed
491
		if (kerconst_intracontrib->intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
lvs's avatar
lvs committed
492
		{
lvs's avatar
lvs committed
493
			opt_distance = kerconst_intra->reqm_hbond_const [atom1_type_vdw_hb] + kerconst_intra->reqm_hbond_const [atom2_type_vdw_hb];
lvs's avatar
lvs committed
494
495
496
		}
		else	//van der Waals
		{
lvs's avatar
lvs committed
497
			opt_distance = 0.5f*(kerconst_intra->reqm_const [atom1_type_vdw_hb] + kerconst_intra->reqm_const [atom2_type_vdw_hb]);
lvs's avatar
lvs committed
498
		}
lvs's avatar
lvs committed
499

lvs's avatar
lvs committed
500
501
502
		// Getting smoothed distance
		// smoothed_distance = function(atomic_distance, opt_distance)
		float smoothed_distance;
503
		float delta_distance = 0.5f*dockpars_smooth; 
lvs's avatar
lvs committed
504

lvs's avatar
lvs committed
505
506
507
508
509
510
511
512
513
		if (atomic_distance <= (opt_distance - delta_distance)) {
			smoothed_distance = atomic_distance + delta_distance;
		}
		else if (atomic_distance < (opt_distance + delta_distance)) {
			smoothed_distance = opt_distance;
		}
		else { // else if (atomic_distance >= (opt_distance + delta_distance))
			smoothed_distance = atomic_distance - delta_distance;
		}
lvs's avatar
lvs committed
514

lvs's avatar
lvs committed
515
		// Calculating energy contributions
516
		// Cuttoff1: internuclear-distance at 8A only for vdw and hbond.
lvs's avatar
lvs committed
517
518
		if (atomic_distance < 8.0f)
		{
Leonardo Solis's avatar
Leonardo Solis committed
519
			// Calculating van der Waals / hydrogen bond term
lvs's avatar
lvs committed
520
			partial_energies[get_local_id(0)] += native_divide(kerconst_intra->VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance/*atomic_distance*/,12));
521
522

			#if 0
lvs's avatar
lvs committed
523
524
			smoothed_intraE = native_divide(kerconst_intra->VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance,12));
			raw_intraE_vdw_hb      = native_divide(kerconst_intra->VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(atomic_distance  ,12)); 
525
526
			#endif

lvs's avatar
lvs committed
527
			#if defined (DEBUG_ENERGY_KERNEL)
lvs's avatar
lvs committed
528
			partial_intraE[get_local_id(0)] += native_divide(kerconst_intra->VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance/*atomic_distance*/,12));
529
530
			#endif

lvs's avatar
lvs committed
531
532
			if (kerconst_intracontrib->intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
				partial_energies[get_local_id(0)] -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance/*atomic_distance*/,10));
533
534

				#if 0
lvs's avatar
lvs committed
535
536
				smoothed_intraE -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance,10));
				raw_intraE_vdw_hb 	-= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(atomic_distance  ,10));
537
538
				#endif

lvs's avatar
lvs committed
539
				#if defined (DEBUG_ENERGY_KERNEL)
lvs's avatar
lvs committed
540
				partial_intraE[get_local_id(0)] -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance/*atomic_distance*/,10));
541
				#endif
542
543
			}
			else {	//van der Waals
lvs's avatar
lvs committed
544
				partial_energies[get_local_id(0)] -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance/*atomic_distance*/,6));
545
546

				#if 0
lvs's avatar
lvs committed
547
548
				smoothed_intraE -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance,6));
				raw_intraE_vdw_hb      -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(atomic_distance  ,6));
549
550
				#endif

lvs's avatar
lvs committed
551
				#if defined (DEBUG_ENERGY_KERNEL)
lvs's avatar
lvs committed
552
				partial_intraE[get_local_id(0)] -= native_divide(kerconst_intra->VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],native_powr(smoothed_distance/*atomic_distance*/,6));
553
				#endif
554
			}
555
		} // if cuttoff1 - internuclear-distance at 8A	
lvs's avatar
lvs committed
556

557
558
559
560
561
562
		// Calculating energy contributions
		// Cuttoff2: internuclear-distance at 20.48A only for el and sol.
		if (atomic_distance < 20.48f)
		{
			// Calculating electrostatic term
	       		partial_energies[get_local_id(0)] += native_divide (
lvs's avatar
lvs committed
563
		                                                     dockpars_coeff_elec * kerconst_interintra->atom_charges_const[atom1_id] * kerconst_interintra->atom_charges_const[atom2_id],
564
565
566
567
		                                                     atomic_distance * (DIEL_A + native_divide(DIEL_B,(1.0f + DIEL_K*native_exp(-DIEL_B_TIMES_H*atomic_distance))))
		                                                     );
			#if 0
			smoothed_intraE += native_divide (
lvs's avatar
lvs committed
568
						      dockpars_coeff_elec * kerconst_interintra->atom_charges_const[atom1_id] * kerconst_interintra->atom_charges_const[atom2_id],
569
570
571
572
						      atomic_distance * (DIEL_A + native_divide(DIEL_B,(1.0f + DIEL_K*native_exp(-DIEL_B_TIMES_H*atomic_distance))))
						     );

			raw_intraE_el 	= native_divide (
lvs's avatar
lvs committed
573
						      dockpars_coeff_elec * kerconst_interintra->atom_charges_const[atom1_id] * kerconst_interintra->atom_charges_const[atom2_id],
574
575
576
577
578
579
						      atomic_distance * (DIEL_A + native_divide(DIEL_B,(1.0f + DIEL_K*native_exp(-DIEL_B_TIMES_H*atomic_distance))))
						     );
			#endif

			#if defined (DEBUG_ENERGY_KERNEL)
			partial_intraE[get_local_id(0)] += native_divide (
lvs's avatar
lvs committed
580
		                                                     dockpars_coeff_elec * kerconst_interintra->kerconst_interintra->atom_charges_const[atom1_id] * kerconst_interintra->atom_charges_const[atom2_id],
581
582
583
		                                                     atomic_distance * (DIEL_A + native_divide(DIEL_B,(1.0f + DIEL_K*native_exp(-DIEL_B_TIMES_H*atomic_distance))))
		                                                     );
			#endif
lvs's avatar
lvs committed
584

585
586
			// Calculating desolvation term
			// 1/25.92 = 0.038580246913580245
lvs's avatar
lvs committed
587
588
589
590
			partial_energies[get_local_id(0)] += ((kerconst_intra->dspars_S_const[atom1_typeid] +
								       dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom1_id]))*kerconst_intra->dspars_V_const[atom2_typeid] +
							               (kerconst_intra->dspars_S_const[atom2_typeid] +
								       dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom2_id]))*kerconst_intra->dspars_V_const[atom1_typeid]) *
591
592
593
							               dockpars_coeff_desolv*native_exp(-0.03858025f*native_powr(atomic_distance, 2));

			#if 0
lvs's avatar
lvs committed
594
595
596
597
			smoothed_intraE += ((kerconst_intra->dspars_S_const[atom1_typeid] +
					dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom1_id]))*kerconst_intra->dspars_V_const[atom2_typeid] +
				       (kerconst_intra->dspars_S_const[atom2_typeid] +
				       dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom2_id]))*kerconst_intra->dspars_V_const[atom1_typeid]) *
598
599
				       dockpars_coeff_desolv*native_exp(-0.03858025f*native_powr(atomic_distance, 2));

lvs's avatar
lvs committed
600
601
602
603
			raw_intraE_sol = ((kerconst_intra->dspars_S_const[atom1_typeid] +
					dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom1_id]))*kerconst_intra->dspars_V_const[atom2_typeid] +
				       (kerconst_intra->dspars_S_const[atom2_typeid] +
				       dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom2_id]))*kerconst_intra->dspars_V_const[atom1_typeid]) *
604
605
				       dockpars_coeff_desolv*native_exp(-0.03858025f*native_powr(atomic_distance, 2));
			#endif
606

607
			#if defined (DEBUG_ENERGY_KERNEL)
lvs's avatar
lvs committed
608
609
610
611
			partial_intraE[get_local_id(0)] += ((kerconst_intra->dspars_S_const[atom1_typeid] +
							       dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom1_id]))*kerconst_intra->dspars_V_const[atom2_typeid] +
						               (kerconst_intra->dspars_S_const[atom2_typeid] +
							       dockpars_qasp*fabs(kerconst_interintra->atom_charges_const[atom2_id]))*kerconst_intra->dspars_V_const[atom1_typeid]) *
612
613
614
						               dockpars_coeff_desolv*native_exp(-0.03858025f*native_powr(atomic_distance, 2));
			#endif
		} // if cuttoff2 - internuclear-distance at 20.48A
lvs's avatar
lvs committed
615
616
617
618
619
620
621
622
623
624



#if 0
			raw_intraE = raw_intraE_vdw_hb + raw_intraE_el + raw_intraE_sol;

			if (debug == true) {
///*
			//if (get_local_id (0) == 0) {

lvs's avatar
lvs committed
625
				if (kerconst_intracontrib->intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
lvs's avatar
lvs committed
626
627
				{
					// diogos table
lvs's avatar
lvs committed
628
//					printf("%3u %-5s %3u %3u %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f\n", contributor_counter, "hbond", atom1_id, atom2_id, kerconst_intra->reqm_hbond_const [atom1_type_vdw_hb], kerconst_intra->reqm_hbond_const [atom2_type_vdw_hb], opt_distance, atomic_distance, smoothed_distance, smoothed_intraE, raw_intraE);
lvs's avatar
lvs committed
629

lvs's avatar
lvs committed
630
					printf("%3u %-5s %3u %3u %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f\n", contributor_counter, "hbond", atom1_id, atom2_id, kerconst_intra->reqm_hbond_const [atom1_type_vdw_hb], kerconst_intra->reqm_hbond_const [atom2_type_vdw_hb], opt_distance, atomic_distance, smoothed_distance, smoothed_intraE, raw_intraE, raw_intraE_vdw_hb, raw_intraE_el, raw_intraE_sol);
lvs's avatar
lvs committed
631
632
633
634
635
636
637
638




				}
				else	//van der Waals
				{
					// diogos table
lvs's avatar
lvs committed
639
//					printf("%3u %-5s %3u %3u %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f\n", contributor_counter, "vdw", atom1_id, atom2_id, kerconst_intra->reqm_const [atom1_type_vdw_hb], kerconst_intra->reqm_const [atom2_type_vdw_hb], opt_distance, atomic_distance, smoothed_distance, smoothed_intraE, raw_intraE);
lvs's avatar
lvs committed
640

lvs's avatar
lvs committed
641
					printf("%3u %-5s %3u %3u %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f %3.5f\n", contributor_counter, "vdw", atom1_id, atom2_id, kerconst_intra->reqm_const [atom1_type_vdw_hb], kerconst_intra->reqm_const [atom2_type_vdw_hb], opt_distance, atomic_distance, smoothed_distance, smoothed_intraE, raw_intraE, raw_intraE_vdw_hb, raw_intraE_el, raw_intraE_sol);
lvs's avatar
lvs committed
642
643
644
645
646
647
648
649


				}; 
			//}
//*/
			}
#endif

650
651
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)

lvs's avatar
lvs committed
652
653
654
655
#if 0
} // if (get_local_id (0) == 0) {
#endif

Leonardo Solis's avatar
Leonardo Solis committed
656
657
658
659
660
661
	barrier(CLK_LOCAL_MEM_FENCE);

	if (get_local_id(0) == 0)
	{
		*energy = partial_energies[0];

662
663
664
		for (uint contributor_counter=1;
		          contributor_counter<NUM_OF_THREADS_PER_BLOCK;
		          contributor_counter++)
Leonardo Solis's avatar
Leonardo Solis committed
665
666
667
668
		{
			*energy += partial_energies[contributor_counter];
		}
	}
669

670
671
	barrier(CLK_LOCAL_MEM_FENCE);

lvs's avatar
lvs committed
672
	#if defined (DEBUG_ENERGY_KERNEL)
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
	if (get_local_id(0) == 0)
	{
		float energy_intraE = partial_intraE[0];

		for (uint contributor_counter=1;
		          contributor_counter<NUM_OF_THREADS_PER_BLOCK;
		          contributor_counter++)
		{
			energy_intraE += partial_intraE[contributor_counter];
		}
		partial_intraE[0] = energy_intraE;
		//printf("%-20s %-10.8f\n", "energy_intraE: ", energy_intraE);

	}
	barrier(CLK_LOCAL_MEM_FENCE);
	#endif

Leonardo Solis's avatar
Leonardo Solis committed
690
691
692
693
694
695
696
}

#include "kernel1.cl"
#include "kernel2.cl"
#include "auxiliary_genetic.cl"
#include "kernel4.cl"
#include "kernel3.cl"
697
#include "calcgradient.cl"
lvs's avatar
lvs committed
698
#include "kernel_sd.cl"
lvs's avatar
lvs committed
699
#include "kernel_fire.cl"