calcgradient.cl 53.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/*
#include "calcenergy_basic.h"
*/
// All related pragmas are in defines.h (accesible by host and device code)

Leonardo Solis's avatar
Leonardo Solis committed
29
30
31
32
33
34
35
36

// The GPU device function calculates the energy's gradient (forces or derivatives) 
// of the entity described by genotype, dockpars and the ligand-data
// arrays in constant memory and returns it in the "gradient_genotype" parameter. 
// The parameter "run_id" has to be equal to the ID of the run 
// whose population includes the current entity (which can be determined with get_group_id(0)), 
// since this determines which reference orientation should be used.

37
//#define DEBUG_GRAD_TRANSLATION_GENES
38
#define DEBUG_GRAD_ROTATION_GENES
Leonardo Solis's avatar
Leonardo Solis committed
39
//#define DEBUG_GRAD_TORSION_GENES
lvs's avatar
lvs committed
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
void map_priv_angle(float* angle)
// The GPU device function maps
// the input parameter to the interval 0...360
// (supposing that it is an angle).
{
	while (*angle >= 360.0f) {
		*angle -= 360.0f;
	}

	while (*angle < 0.0f) {
		*angle += 360.0f;
	}
}

lvs's avatar
lvs committed
56
57
58
59
// Atomic operations used in gradients of intra contributors.
// Only atomic_cmpxchg() works on floats. 
// So for atomic add on floats, this link was used:
// https://streamhpc.com/blog/2016-02-09/atomic-operations-for-floats-in-opencl-improved/
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
void atomicAdd_g_f(volatile __local float *addr, float val)
{
	union{
		unsigned int u32;
		float f32;
	} next, expected, current;

	current.f32 = *addr;

	do{
		expected.f32 = current.f32;
		next.f32 = expected.f32 + val;
		current.u32 = atomic_cmpxchg( (volatile __local unsigned int *)addr, expected.u32, next.u32);
	} while( current.u32 != expected.u32 );
}

void atomicSub_g_f(volatile __local float *addr, float val)
{
	union{
		unsigned int u32;
		float f32;
	} next, expected, current;

	current.f32 = *addr;

	do{
		expected.f32 = current.f32;
		next.f32 = expected.f32 - val;
		current.u32 = atomic_cmpxchg( (volatile __local unsigned int *)addr, expected.u32, next.u32);
	} while( current.u32 != expected.u32 );
}
lvs's avatar
lvs committed
91

92

93
94
95
96
97
98
void gpu_calc_gradient(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
99
100
101
								    		// g1 = gridsize_x
				uint   dockpars_gridsize_x_times_y, 		// g2 = gridsize_x * gridsize_y
				uint   dockpars_gridsize_x_times_y_times_z,	// g3 = gridsize_x * gridsize_y * gridsize_z
102
103
104
105
106
107
108
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
109

Leonardo Solis's avatar
Leonardo Solis committed
110
111
112
113
				// Some OpenCL compilers don't allow declaring 
				// local variables within non-kernel functions.
				// These local variables must be declared in a kernel, 
				// and then passed to non-kernel functions.
114
		    	__local float* genotype,
115
			__local float* energy,
116
117
118
119
120
121
122
123
124
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,

	             __constant float* atom_charges_const,
                     __constant char*  atom_types_const,
                     __constant char*  intraE_contributors_const,
lvs's avatar
lvs committed
125
126
127
	                  	float  dockpars_smooth,
	       	     __constant float* reqm,
	       	     __constant float* reqm_hbond,
lvs's avatar
lvs committed
128
129
	             __constant uint*  atom1_types_reqm,
       	             __constant uint*  atom2_types_reqm,
130
131
132
133
134
135
136
137
138
139
                     __constant float* VWpars_AC_const,
                     __constant float* VWpars_BD_const,
                     __constant float* dspars_S_const,
                     __constant float* dspars_V_const,
                     __constant int*   rotlist_const,
                     __constant float* ref_coords_x_const,
                     __constant float* ref_coords_y_const,
                     __constant float* ref_coords_z_const,
                     __constant float* rotbonds_moving_vectors_const,
                     __constant float* rotbonds_unit_vectors_const,
140
141
142
143
                     __constant float* ref_orientation_quats_const,
		     __constant int*   rotbonds_const,
		     __constant int*   rotbonds_atoms_const,
		     __constant int*   num_rotating_atoms_per_rotbond_const
144
145
146
147
			,
		     __constant float* angle_const,
		     __constant float* dependence_on_theta_const,
		     __constant float* dependence_on_rotangle_const
148
149
150
151
152
153
154
155
156
157
158
159

		    // Gradient-related arguments
		    // Calculate gradients (forces) for intermolecular energy
		    // Derived from autodockdev/maps.py
		    // "is_enabled_gradient_calc": enables gradient calculation.
		    // In Genetic-Generation: no need for gradients
		    // In Gradient-Minimizer: must calculate gradients
			,
			    int    dockpars_num_of_genes,
	    	    __local float* gradient_inter_x,
	            __local float* gradient_inter_y,
	            __local float* gradient_inter_z,
160
161
162
		    __local float* gradient_intra_x,
		    __local float* gradient_intra_y,
		    __local float* gradient_intra_z,
163
164
165
		    __local float* gradient_genotype			
)
{
166
	// Initializing gradients (forces) 
167
168
169
170
	// Derived from autodockdev/maps.py
	for (uint atom_id = get_local_id(0);
		  atom_id < dockpars_num_of_atoms;
		  atom_id+= NUM_OF_THREADS_PER_BLOCK) {
171
		// Intermolecular gradients
172
173
174
		gradient_inter_x[atom_id] = 0.0f;
		gradient_inter_y[atom_id] = 0.0f;
		gradient_inter_z[atom_id] = 0.0f;
175
176
177
178
179
180
		// Intramolecular gradients
		gradient_intra_x[atom_id] = 0.0f;
		gradient_intra_y[atom_id] = 0.0f;
		gradient_intra_z[atom_id] = 0.0f;
	}

Leonardo Solis's avatar
Leonardo Solis committed
181
182
183
184
185
186
187
188
	// Initializing gradient genotypes
	for (uint gene_cnt = get_local_id(0);
		  gene_cnt < dockpars_num_of_genes;
		  gene_cnt+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_genotype[gene_cnt] = 0.0f;
	}
	barrier(CLK_LOCAL_MEM_FENCE);

189
190
191
192
193
194
195
196
197
198
199
	// Convert orientation genes from sex. to radians
	float phi         = genotype[3] * DEG_TO_RAD;
	float theta       = genotype[4] * DEG_TO_RAD;
	float genrotangle = genotype[5] * DEG_TO_RAD;

	float genrot_unitvec [3];
	float sin_angle = native_sin(theta);
	genrot_unitvec [0] = sin_angle*native_cos(phi);
	genrot_unitvec [1] = sin_angle*native_sin(phi);
	genrot_unitvec [2] = native_cos(theta);

200
	uchar g1 = dockpars_gridsize_x;
lvs's avatar
lvs committed
201
202
	uint  g2 = dockpars_gridsize_x_times_y;
  	uint  g3 = dockpars_gridsize_x_times_y_times_z;
203
204

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
205
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
	// ================================================
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
	{
		int rotation_list_element = rotlist_const[rotation_counter];

		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
		{
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];

			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
			{
				atom_to_rotate[0] = ref_coords_x_const[atom_id];
				atom_to_rotate[1] = ref_coords_y_const[atom_id];
				atom_to_rotate[2] = ref_coords_z_const[atom_id];
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

			// Capturing rotation vectors and angle
234
			float rotation_unitvec[3];
235
			float rotation_movingvec[3];
236
			float rotation_angle;
237
238
239
240
241
242

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
			{
243
244
245
				rotation_unitvec[0] = genrot_unitvec[0];
				rotation_unitvec[1] = genrot_unitvec[1];
				rotation_unitvec[2] = genrot_unitvec[2];
246
247
248
249

				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
250
251

				rotation_angle = genrotangle;
252
253
254
255
256
257
258
259
260
261
262
263
264
			}
			else	// If rotating around rotatable bond
			{
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;

				rotation_unitvec[0] = rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = rotbonds_unit_vectors_const[3*rotbond_id+2];

				rotation_movingvec[0] = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = rotbonds_moving_vectors_const[3*rotbond_id+2];

265
				rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;
266

267
268
269
270
271
272
273
				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];
			}

274
275
276
277
278
279
280
281
			// Transforming orientation and torsion angles into quaternions
			rotation_angle  = rotation_angle * 0.5f;
			float sin_angle = native_sin(rotation_angle);
			quatrot_left_q  = native_cos(rotation_angle);
			quatrot_left_x  = sin_angle*rotation_unitvec[0];
			quatrot_left_y  = sin_angle*rotation_unitvec[1];
			quatrot_left_z  = sin_angle*rotation_unitvec[2];

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
			{
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

				quatrot_left_q = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+1]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+3]-
						 ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+2]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+3]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+2]-
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
			}

			quatrot_temp_q = 0 -
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];

			atom_to_rotate [0] = 0 -
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
			atom_to_rotate [1] = 0 -
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
			atom_to_rotate [2] = 0 -
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;

			// Performing final movement and storing values
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
354
	// CALCULATING INTERMOLECULAR GRADIENTS
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
	// ================================================
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
	{
		uint atom_typeid = atom_types_const[atom_id];
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
		float q = atom_charges_const[atom_id];

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
			
			// Setting gradients (forces) penalties.
			// These are valid as long as they are high
			gradient_inter_x[atom_id] += 16777216.0f;
			gradient_inter_y[atom_id] += 16777216.0f;
			gradient_inter_z[atom_id] += 16777216.0f;
		}
		else
		{
			// Getting coordinates
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

389
390
			//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "dx,dy,dz", atom_id, dx, dy, dz);

391
392
393
394
395
396
397
398
399
400
401
			// Calculating interpolation weights
			float weights[2][2][2];
			weights [0][0][0] = (1-dx)*(1-dy)*(1-dz);
			weights [1][0][0] = dx*(1-dy)*(1-dz);
			weights [0][1][0] = (1-dx)*dy*(1-dz);
			weights [1][1][0] = dx*dy*(1-dz);
			weights [0][0][1] = (1-dx)*(1-dy)*dz;
			weights [1][0][1] = dx*(1-dy)*dz;
			weights [0][1][1] = (1-dx)*dy*dz;
			weights [1][1][1] = dx*dy*dz;

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
			// Capturing affinity values
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

			// -------------------------------------------------------------------
			// Deltas dx, dy, dz are already normalized 
			// (by host/src/getparameters.cpp) in OCLaDock.
			// The correspondance between vertices in xyz axes is:
			// 0, 1, 2, 3, 4, 5, 6, 7  and  000, 100, 010, 001, 101, 110, 011, 111
			// -------------------------------------------------------------------
			/*
			    deltas: (x-x0)/(x1-x0), (y-y0...
			    vertices: (000, 100, 010, 001, 101, 110, 011, 111)        

				  Z
				  '
				  3 - - - - 6
				 /.        /|
				4 - - - - 7 |
				| '       | |
				| 0 - - - + 2 -- Y
				'/        |/
				1 - - - - 5
			       /
			      X
			*/

			// Intermediate values for vectors in x-direction
			float x10, x52, x43, x76;
			float vx_z0, vx_z1;

			// Intermediate values for vectors in y-direction
			float y20, y51, y63, y74;
			float vy_z0, vy_z1;

			// Intermediate values for vectors in z-direction
			float z30, z41, z62, z75;
			float vz_y0, vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "atype" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

Leonardo Solis's avatar
Leonardo Solis committed
471
			// Vector in x-direction
472
473
474
475
476
477
478
479
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
480
			// Vector in y-direction
481
482
483
484
485
486
487
488
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
489
			// Vectors in z-direction
490
491
492
493
494
495
496
497
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

498
499
			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "atom aff", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "elec" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing electrostatic values
			atom_typeid = dockpars_num_of_atypes;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
519
			// Vector in x-direction
520
521
522
523
524
525
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
526
			gradient_inter_x[atom_id] += q * ((1 - dz) * vx_z0 + dz * vx_z1);
527

Leonardo Solis's avatar
Leonardo Solis committed
528
			// Vector in y-direction
529
530
531
532
533
534
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
535
			gradient_inter_y[atom_id] += q *((1 - dz) * vy_z0 + dz * vy_z1);
536

Leonardo Solis's avatar
Leonardo Solis committed
537
			// Vectors in z-direction
538
539
540
541
542
543
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
544
545
546
			gradient_inter_z[atom_id] += q *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "elec", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
547
548

			// -------------------------------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
549
			// Calculating gradients (forces) corresponding to 
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
			// "dsol" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing desolvation values
			atom_typeid = dockpars_num_of_atypes+1;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
567
			// Vector in x-direction
568
569
570
571
572
573
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
574
			gradient_inter_x[atom_id] += fabs(q) * ((1 - dz) * vx_z0 + dz * vx_z1);
575

Leonardo Solis's avatar
Leonardo Solis committed
576
			// Vector in y-direction
577
578
579
580
581
582
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
583
			gradient_inter_y[atom_id] += fabs(q) *((1 - dz) * vy_z0 + dz * vy_z1);
584

Leonardo Solis's avatar
Leonardo Solis committed
585
			// Vectors in z-direction
586
587
588
589
590
591
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
592
593
594
			gradient_inter_z[atom_id] += fabs(q) *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "desol", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
595
596
597
598
599
			// -------------------------------------------------------------------
		}

	} // End atom_id for-loop (INTERMOLECULAR ENERGY)

600
601
602
603
	// Inter- and intra-molecular energy calculation
	// are independent from each other, so NO barrier is needed here.
  	// As these two require different operations,
	// they can be executed only sequentially on the GPU.
604
605

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
606
	// CALCULATING INTRAMOLECULAR GRADIENTS
607
608
609
	// ================================================
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
Leonardo Solis's avatar
Leonardo Solis committed
610
	          contributor_counter+= NUM_OF_THREADS_PER_BLOCK)
611
	{
lvs's avatar
lvs committed
612
613
		// Storing in a private variable 
		// the gradient contribution of each contributing atomic pair
614
615
		float priv_gradient_per_intracontributor= 0.0f;

616
		// Getting atom IDs
617
618
		uint atom1_id = intraE_contributors_const[3*contributor_counter];
		uint atom2_id = intraE_contributors_const[3*contributor_counter+1];
Leonardo Solis's avatar
Leonardo Solis committed
619
620
621
622
	
		/*
		printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
		*/
623
		
Leonardo Solis's avatar
Leonardo Solis committed
624
625
626
627
628
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
629

630
		// Calculating atomic distance
631
632
		float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
		float atomic_distance = dist*dockpars_grid_spacing;
633

lvs's avatar
lvs committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
		// Getting type IDs
		uint atom1_typeid = atom_types_const[atom1_id];
		uint atom2_typeid = atom_types_const[atom2_id];

		uint atom1_type_vdw_hb = atom1_types_reqm [atom1_typeid];
	     	uint atom2_type_vdw_hb = atom2_types_reqm [atom2_typeid];
		//printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);

		// Getting optimum pair distance (opt_distance) from reqm and reqm_hbond
		// reqm: equilibrium internuclear separation 
		//       (sum of the vdW radii of two like atoms (A)) in the case of vdW
		// reqm_hbond: equilibrium internuclear separation
		//  	 (sum of the vdW radii of two like atoms (A)) in the case of hbond 
		float opt_distance;

		if (intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
650
		{
lvs's avatar
lvs committed
651
652
653
654
655
656
			opt_distance = reqm_hbond [atom1_type_vdw_hb] + reqm_hbond [atom2_type_vdw_hb];
		}
		else	//van der Waals
		{
			opt_distance = 0.5f*(reqm [atom1_type_vdw_hb] + reqm [atom2_type_vdw_hb]);
		}
lvs's avatar
lvs committed
657

lvs's avatar
lvs committed
658
659
660
661
		// Getting smoothed distance
		// smoothed_distance = function(atomic_distance, opt_distance)
		float smoothed_distance;
		float delta_distance = 0.5f*dockpars_smooth;
lvs's avatar
lvs committed
662

lvs's avatar
lvs committed
663
664
665
666
667
668
669
670
671
		if (atomic_distance <= (opt_distance - delta_distance)) {
			smoothed_distance = atomic_distance + delta_distance;
		}
		else if (atomic_distance < (opt_distance + delta_distance)) {
			smoothed_distance = opt_distance;
		}
		else { // else if (atomic_distance >= (opt_distance + delta_distance))
			smoothed_distance = atomic_distance - delta_distance;
		}
lvs's avatar
lvs committed
672

lvs's avatar
lvs committed
673
		// Calculating gradient contributions
674
		// Cuttoff1: internuclear-distance at 8A only for vdw and hbond.
lvs's avatar
lvs committed
675
676
		if (atomic_distance < 8.0f)
		{
677
			// Calculating van der Waals / hydrogen bond term
lvs's avatar
lvs committed
678
679
680
			priv_gradient_per_intracontributor += native_divide (-12*VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
									     native_powr(smoothed_distance/*atomic_distance*/, 13)
									    );
681

682
			if (intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
lvs's avatar
lvs committed
683
684
685
				priv_gradient_per_intracontributor += native_divide (10*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										     native_powr(smoothed_distance/*atomic_distance*/, 11)
										    );
686
687
			}
			else {	//van der Waals
lvs's avatar
lvs committed
688
689
690
				priv_gradient_per_intracontributor += native_divide (6*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										     native_powr(smoothed_distance/*atomic_distance*/, 7)
										    );
691
			}
692
		} // if cuttoff1 - internuclear-distance at 8A	
693

694
695
696
697
698
699
700
		// Calculating energy contributions
		// Cuttoff2: internuclear-distance at 20.48A only for el and sol.
		if (atomic_distance < 20.48f)
		{
			// Calculating electrostatic term
			// http://www.wolframalpha.com/input/?i=1%2F(x*(A%2B(B%2F(1%2BK*exp(-h*B*x)))))
			float upper = DIEL_A*native_powr(native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K, 2) + (DIEL_B)*native_exp(DIEL_B_TIMES_H*atomic_distance)*(DIEL_B_TIMES_H_TIMES_K*atomic_distance + native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K);
701
		
702
			float lower = native_powr(atomic_distance, 2) * native_powr(DIEL_A * (native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K) + DIEL_B * native_exp(DIEL_B_TIMES_H*atomic_distance), 2);
lvs's avatar
lvs committed
703

704
	       		priv_gradient_per_intracontributor +=  -dockpars_coeff_elec * atom_charges_const[atom1_id] * atom_charges_const[atom2_id] * native_divide (upper, lower);
lvs's avatar
lvs committed
705

706
707
708
709
710
711
712
			// Calculating desolvation term
			priv_gradient_per_intracontributor += (
									       (dspars_S_const[atom1_typeid] + dockpars_qasp*fabs(atom_charges_const[atom1_id])) * dspars_V_const[atom2_typeid] +
								               (dspars_S_const[atom2_typeid] + dockpars_qasp*fabs(atom_charges_const[atom2_id])) * dspars_V_const[atom1_typeid]
									      ) *
						               			dockpars_coeff_desolv * -0.07716049382716049 * atomic_distance * native_exp(-0.038580246913580245*native_powr(atomic_distance, 2));
		} // if cuttoff2 - internuclear-distance at 20.48A
lvs's avatar
lvs committed
713
714
715
716
717
718
719
720
721
722

		// Decomposing "priv_gradient_per_intracontributor" 
		// into the contribution of each atom of the pair 
		float subx_div_dist = native_divide(subx, dist);
		float suby_div_dist = native_divide(suby, dist);
		float subz_div_dist = native_divide(subz, dist);

		float priv_intra_gradient_x = priv_gradient_per_intracontributor * subx_div_dist;
		float priv_intra_gradient_y = priv_gradient_per_intracontributor * suby_div_dist;
		float priv_intra_gradient_z = priv_gradient_per_intracontributor * subz_div_dist;
lvs's avatar
lvs committed
723
		
lvs's avatar
lvs committed
724
725
726
727
728
729
730
731
732
733
		// Calculating gradients in xyz components.
		// Gradients for both atoms in a single contributor pair
		// have the same magnitude, but opposite directions
		atomicSub_g_f(&gradient_intra_x[atom1_id], priv_intra_gradient_x);
		atomicSub_g_f(&gradient_intra_y[atom1_id], priv_intra_gradient_y);
		atomicSub_g_f(&gradient_intra_z[atom1_id], priv_intra_gradient_z);

		atomicAdd_g_f(&gradient_intra_x[atom2_id], priv_intra_gradient_x);
		atomicAdd_g_f(&gradient_intra_y[atom2_id], priv_intra_gradient_y);
		atomicAdd_g_f(&gradient_intra_z[atom2_id], priv_intra_gradient_z);
734
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)
735

lvs's avatar
lvs committed
736
737
738
739
	
	// Commented to remove unnecessary local storage which was
	// required by gradient_per_intracontributor[MAX_INTRAE_CONTRIBUTORS]
	/*
740
	barrier(CLK_LOCAL_MEM_FENCE);
741

742
	// Accumulating gradients from "gradient_per_intracontributor" for each each
743
744
745
746
747
748
749
750
751
	if (get_local_id(0) == 0) {
		for (uint contributor_counter = 0;
			  contributor_counter < dockpars_num_of_intraE_contributors;
			  contributor_counter ++) {

			// Getting atom IDs
			uint atom1_id = intraE_contributors_const[3*contributor_counter];
			uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

752
753
754
755
756
757
			// Calculating xyz distances in Angstroms of vector
			// that goes from "atom1_id"-to-"atom2_id"
			float subx = (calc_coords_x[atom2_id] - calc_coords_x[atom1_id]);
			float suby = (calc_coords_y[atom2_id] - calc_coords_y[atom1_id]);
			float subz = (calc_coords_z[atom2_id] - calc_coords_z[atom1_id]);
			float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
758

759
760
761
762
			float subx_div_dist = native_divide(subx, dist);
			float suby_div_dist = native_divide(suby, dist);
			float subz_div_dist = native_divide(subz, dist);

763
764
765
			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
766
767
768
			gradient_intra_x[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom1_id] -= gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subz_div_dist;
769

770
771
772
			gradient_intra_x[atom2_id] += gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom2_id] += gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom2_id] += gradient_per_intracontributor[contributor_counter] * subz_div_dist;
773
774

			//printf("%-20s %-10u %-5u %-5u %-10.8f\n", "grad_intracontrib", contributor_counter, atom1_id, atom2_id, gradient_per_intracontributor[contributor_counter]);
775
776
		}
	}
lvs's avatar
lvs committed
777
	*/	
778

779
780
	barrier(CLK_LOCAL_MEM_FENCE);

781
782
783
784
	// Accumulating inter- and intramolecular gradients
	for (uint atom_cnt = get_local_id(0);
		  atom_cnt < dockpars_num_of_atoms;
		  atom_cnt+= NUM_OF_THREADS_PER_BLOCK) {
785
786
787
788
789
790

		// Grid gradients were calculated in the grid space,
		// so they have to be put back in Angstrom.

		// Intramolecular gradients were already in Angstrom,
		// so no scaling for them is required.
791
792
793
		gradient_inter_x[atom_cnt] = native_divide(gradient_inter_x[atom_cnt], dockpars_grid_spacing);
		gradient_inter_y[atom_cnt] = native_divide(gradient_inter_y[atom_cnt], dockpars_grid_spacing);
		gradient_inter_z[atom_cnt] = native_divide(gradient_inter_z[atom_cnt], dockpars_grid_spacing);
794

lvs's avatar
lvs committed
795
		// Re-using "gradient_inter_*" for total gradient (inter+intra)
796
797
798
799
		gradient_inter_x[atom_cnt] += gradient_intra_x[atom_cnt];
		gradient_inter_y[atom_cnt] += gradient_intra_y[atom_cnt];
		gradient_inter_z[atom_cnt] += gradient_intra_z[atom_cnt];

800
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_grid", atom_cnt, gradient_inter_x[atom_cnt], gradient_inter_y[atom_cnt], gradient_inter_z[atom_cnt]);
801
802
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_intra", atom_cnt, gradient_intra_x[atom_cnt], gradient_intra_y[atom_cnt], gradient_intra_z[atom_cnt]);
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "calc_coords", atom_cnt, calc_coords_x[atom_cnt], calc_coords_y[atom_cnt], calc_coords_z[atom_cnt]);
803
804
	}

805
806
	barrier(CLK_LOCAL_MEM_FENCE);

807
	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
808
	// Obtaining translation-related gradients
809
810
811
812
813
	// ------------------------------------------
	if (get_local_id(0) == 0) {
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
lvs's avatar
lvs committed
814
815

			// Re-using "gradient_inter_*" for total gradient (inter+intra)
816
817
818
			gradient_genotype[0] += gradient_inter_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_inter_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_inter_z[lig_atom_id]; // gradient for gene 2: gene z
819
		}
820

821
822
823
824
825
826
827
828
829
		// Scaling gradient for translational genes as 
		// their corresponding gradients were calculated in the space 
		// where these genes are in Angstrom,
		// but OCLaDock translational genes are within in grids
		gradient_genotype[0] *= dockpars_grid_spacing;
		gradient_genotype[1] *= dockpars_grid_spacing;
		gradient_genotype[2] *= dockpars_grid_spacing;

		#if defined (DEBUG_GRAD_TRANSLATION_GENES)
830
831
832
		printf("gradient_x:%f\n", gradient_genotype [0]);
		printf("gradient_y:%f\n", gradient_genotype [1]);
		printf("gradient_z:%f\n", gradient_genotype [2]);
833
		#endif
834
835
836
	}

	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
837
838
	// Obtaining rotation-related gradients
	// ------------------------------------------ 
839
840
841
842
843
844
845
846
847
848
849
				
	// Transform gradients_inter_{x|y|z} 
	// into local_gradients[i] (with four quaternion genes)
	// Derived from autodockdev/motions.py/forces_to_delta_genes()

	// Transform local_gradients[i] (with four quaternion genes)
	// into local_gradients[i] (with three Shoemake genes)
	// Derived from autodockdev/motions.py/_get_cube3_gradient()
	// ------------------------------------------
	if (get_local_id(0) == 1) {

850
851
852
853
		float3 torque_rot;
		torque_rot.x = 0.0f;
		torque_rot.y = 0.0f;
		torque_rot.z = 0.0f;
854

855
		#if defined (DEBUG_GRAD_ROTATION_GENES)
856
857
		printf("\n%s\n", "----------------------------------------------------------");
		printf("%-20s %-10.6f %-10.6f %-10.6f\n", "initial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
858
		#endif
859

860
		// Declaring a variable to hold the center of rotation 
861
862
		// In getparameters.cpp, it indicates 
		// translation genes are in grid spacing (instead of Angstroms)
Leonardo Solis's avatar
Leonardo Solis committed
863
		float3 about;
864
865
866
		about.x = genotype[0];
		about.y = genotype[1];
		about.z = genotype[2];
867
	
868
869
870
		// Temporal variable to calculate translation differences.
		// They are converted back to Angstroms here
		float3 r;
871
			
872
873
874
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
Leonardo Solis's avatar
Leonardo Solis committed
875
876
877
			r.x = (calc_coords_x[lig_atom_id] - about.x) * dockpars_grid_spacing; 
			r.y = (calc_coords_y[lig_atom_id] - about.y) * dockpars_grid_spacing;  
			r.z = (calc_coords_z[lig_atom_id] - about.z) * dockpars_grid_spacing; 
878

lvs's avatar
lvs committed
879
			// Re-using "gradient_inter_*" for total gradient (inter+intra)
880
			float3 force;
881
882
883
			force.x	= gradient_inter_x[lig_atom_id];
			force.y	= gradient_inter_y[lig_atom_id]; 
			force.z	= gradient_inter_z[lig_atom_id];
884

885
			torque_rot += cross(r, force);
886
887

			#if defined (DEBUG_GRAD_ROTATION_GENES)
888
#if 0
889
890
891
892
893
			printf("%-20s %-10u\n", "contrib. of atom-id: ", lig_atom_id);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "r             : ", r.x, r.y, r.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "force         : ", force.x, force.y, force.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "partial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
			printf("\n");
894
895
896
897
898
899
900
901
#endif
			// This printing is similar to autodockdevpy
			if (lig_atom_id == 0) {
				printf("\n%s\n", "----------------------------------------------------------");
				printf("%-10s %-10s %-10s %-10s %-11s %-11s %-11s %-11s %-11s %-11s\n", "atom_id", "r.x", "r.y", "r.z", "force.x", "force.y", "force.z", "torque.x", "torque.y", "torque.z");
			}
			printf("%-10u %-10.6f %-10.6f %-10.6f %-11.6f %-11.6f %-11.6f %-11.6f %-11.6f %-11.6f\n", lig_atom_id, r.x, r.y, r.z, force.x, force.y, force.z, torque_rot.x, torque_rot.y, torque_rot.z);
			//printf("%-10u %-10.6f %-10.6f %-10.6f %-10.6f %-10.6f %-10.6f\n", lig_atom_id, r.x, r.y, r.z, force.x, force.y, force.z);
902
			#endif
903

904
		}
905

906
907
908
909




910
		#if defined (DEBUG_GRAD_ROTATION_GENES)
911
912
		printf("\n%s\n", "----------------------------------------------------------");
		printf("%-20s %-10.6f %-10.6f %-10.6f\n", "final torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
913
		#endif
914
915
916

		// Derived from rotation.py/axisangle_to_q()
		// genes[3:7] = rotation.axisangle_to_q(torque, rad)
917
		float torque_length = fast_length(torque_rot);
918
919
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
920
921
		printf("\n%s\n", "----------------------------------------------------------");
		printf("%-20s %-10.6f\n", "torque length: ", torque_length);
922
		#endif
923

924
		/*
925
		// Infinitesimal rotation in radians
926
		const float infinitesimal_radian = 1E-5;
927
		*/
928
929
930
931

		// Finding the quaternion that performs
		// the infinitesimal rotation around torque axis
		float4 quat_torque;
932
933
934
935
936
937
938
939
		#if 0
		quat_torque.w = native_cos(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.x = fast_normalize(torque_rot).x * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.y = fast_normalize(torque_rot).y * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.z = fast_normalize(torque_rot).z * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		#endif

		quat_torque.w = COS_HALF_INFINITESIMAL_RADIAN;
940
		quat_torque.x = fast_normalize(torque_rot).x * SIN_HALF_INFINITESIMAL_RADIAN; 
941
942
		quat_torque.y = fast_normalize(torque_rot).y * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.z = fast_normalize(torque_rot).z * SIN_HALF_INFINITESIMAL_RADIAN;
943
944

		#if defined (DEBUG_GRAD_ROTATION_GENES)
945
946
947
948
949
950
951
952
		#if 0		
		printf("fast_normalize(torque_rot).x:%-.6f\n", fast_normalize(torque_rot).x);
		printf("fast_normalize(torque_rot).y:%-.6f\n", fast_normalize(torque_rot).y);
		printf("fast_normalize(torque_rot).z:%-.6f\n", fast_normalize(torque_rot).z);
		#endif

		printf("\n%s\n", "----------------------------------------------------------");
		printf("%-20s %-10.6f %-10.6f %-10.6f %-10.6f\n", "quat_torque (w,x,y,z): ", quat_torque.w, quat_torque.x, quat_torque.y, quat_torque.z);
953
		#endif
954

955
		// Converting quaternion gradients into orientation gradients 
956
957
		// Derived from autodockdev/motion.py/_get_cube3_gradient

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
		// This is where we are in the orientation axis-angle space
		// Equivalent to "current_oclacube" in autodockdev/motions.py
		// TODO: Check very initial input orientation genes
		float current_phi, current_theta, current_rotangle;
		current_phi      = genotype[3]; // phi      (in sexagesimal (DEG) unbounded)
		current_theta    = genotype[4]; // theta    (in sexagesimal (DEG) unbounded)
		current_rotangle = genotype[5]; // rotangle (in sexagesimal (DEG) unbounded)

		map_priv_angle(&current_phi);	   // phi      (in DEG bounded within [0, 360])
		map_priv_angle(&current_theta);	   // theta    (in DEG bounded within [0, 360])
		map_priv_angle(&current_rotangle); // rotangle (in DEG bounded within [0, 360])

		current_phi      = current_phi      * DEG_TO_RAD; // phi      (in RAD)
		current_theta    = current_theta    * DEG_TO_RAD; // theta    (in RAD)
 		current_rotangle = current_rotangle * DEG_TO_RAD; // rotangle (in RAD)

		bool is_theta_gt_pi = (current_theta > PI_FLOAT) ? true: false;

976
		#if defined (DEBUG_GRAD_ROTATION_GENES)
977
978
		printf("\n%s\n", "----------------------------------------------------------");
		printf("%-30s %-10.6f %-10.6f %-10.6f\n", "current_axisangle (1,2,3): ", current_phi, current_theta, current_rotangle);
979
		#endif		
980

Leonardo Solis's avatar
Leonardo Solis committed
981
		// This is where we are in quaternion space
982
		// current_q = oclacube_to_quaternion(angles)
983
		float4 current_q;
984
985
986
987
988
989
990
991
992
993
994
995

		// Axis of rotation
		float rotaxis_x = native_sin(current_theta) * native_cos(current_phi);
		float rotaxis_y = native_sin(current_theta) * native_sin(current_phi);
		float rotaxis_z = native_cos(current_theta);
		
		float ang;
		ang = current_rotangle * 0.5f;
		current_q.w = native_cos(ang); 
		current_q.x = rotaxis_x * native_sin(ang);
		current_q.y = rotaxis_y * native_sin(ang);
		current_q.z = rotaxis_z * native_sin(ang);
996
997

		#if defined (DEBUG_GRAD_ROTATION_GENES)
998
999
		printf("\n%s\n", "----------------------------------------------------------");
		printf("%-30s %-10.6f %-10.6f %-10.6f %-10.6f\n", "current_q (w,x,y,z): ", current_q.w, current_q.x, current_q.y, current_q.z);
1000
		#endif
For faster browsing, not all history is shown. View entire blame