calcgradient.cl 36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/*
#include "calcenergy_basic.h"
*/
// All related pragmas are in defines.h (accesible by host and device code)

Leonardo Solis's avatar
Leonardo Solis committed
29
30
31
32
33
34
35
36

// The GPU device function calculates the energy's gradient (forces or derivatives) 
// of the entity described by genotype, dockpars and the ligand-data
// arrays in constant memory and returns it in the "gradient_genotype" parameter. 
// The parameter "run_id" has to be equal to the ID of the run 
// whose population includes the current entity (which can be determined with get_group_id(0)), 
// since this determines which reference orientation should be used.

37
38
39
40
41
42
43
44
45
46
47
48
49
void gpu_calc_gradient(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
Leonardo Solis's avatar
Leonardo Solis committed
50
51
52
53
				// Some OpenCL compilers don't allow declaring 
				// local variables within non-kernel functions.
				// These local variables must be declared in a kernel, 
				// and then passed to non-kernel functions.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
		    	__local float* genotype,
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,

	             __constant float* atom_charges_const,
                     __constant char*  atom_types_const,
                     __constant char*  intraE_contributors_const,
                     __constant float* VWpars_AC_const,
                     __constant float* VWpars_BD_const,
                     __constant float* dspars_S_const,
                     __constant float* dspars_V_const,
                     __constant int*   rotlist_const,
                     __constant float* ref_coords_x_const,
                     __constant float* ref_coords_y_const,
                     __constant float* ref_coords_z_const,
                     __constant float* rotbonds_moving_vectors_const,
                     __constant float* rotbonds_unit_vectors_const,
                     __constant float* ref_orientation_quats_const

		    // Gradient-related arguments
		    // Calculate gradients (forces) for intermolecular energy
		    // Derived from autodockdev/maps.py
		
		    // "is_enabled_gradient_calc": enables gradient calculation.
		    // In Genetic-Generation: no need for gradients
		    // In Gradient-Minimizer: must calculate gradients
			,
			    int    dockpars_num_of_genes,
	    	    __local float* gradient_inter_x,
	            __local float* gradient_inter_y,
	            __local float* gradient_inter_z,
88
89
90
		    __local float* gradient_intra_x,
		    __local float* gradient_intra_y,
		    __local float* gradient_intra_z,
91
92
93
		    __local float* gradient_x,
		    __local float* gradient_y,
		    __local float* gradient_z,
94
	            __local float* gradient_per_intracontributor,
95
96
97
		    __local float* gradient_genotype			
)
{
98
	// Initializing gradients (forces) 
99
100
101
102
	// Derived from autodockdev/maps.py
	for (uint atom_id = get_local_id(0);
		  atom_id < dockpars_num_of_atoms;
		  atom_id+= NUM_OF_THREADS_PER_BLOCK) {
103
		// Intermolecular gradients
104
105
106
		gradient_inter_x[atom_id] = 0.0f;
		gradient_inter_y[atom_id] = 0.0f;
		gradient_inter_z[atom_id] = 0.0f;
107
108
109
110
111
112
		// Intramolecular gradients
		gradient_intra_x[atom_id] = 0.0f;
		gradient_intra_y[atom_id] = 0.0f;
		gradient_intra_z[atom_id] = 0.0f;
	}

Leonardo Solis's avatar
Leonardo Solis committed
113
	// Initializing gradients per intramolecular contributor pairs 
114
115
116
117
	for (uint intracontrib_atompair_id = get_local_id(0);
		  intracontrib_atompair_id < dockpars_num_of_intraE_contributors;
		  intracontrib_atompair_id+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_per_intracontributor[intracontrib_atompair_id] = 0.0f;
118
119
	}

Leonardo Solis's avatar
Leonardo Solis committed
120
121
122
123
124
125
126
127
128
	// Initializing gradient genotypes
	for (uint gene_cnt = get_local_id(0);
		  gene_cnt < dockpars_num_of_genes;
		  gene_cnt+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_genotype[gene_cnt] = 0.0f;
	}

	barrier(CLK_LOCAL_MEM_FENCE);

129
130
131
132
133
134
	uchar g1 = dockpars_gridsize_x;
	uint  g2 = dockpars_gridsize_x * dockpars_gridsize_y;
  	uint  g3 = dockpars_gridsize_x * dockpars_gridsize_y * dockpars_gridsize_z;


	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
135
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
	// ================================================
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
	{
		int rotation_list_element = rotlist_const[rotation_counter];

		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
		{
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];

			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
			{
				atom_to_rotate[0] = ref_coords_x_const[atom_id];
				atom_to_rotate[1] = ref_coords_y_const[atom_id];
				atom_to_rotate[2] = ref_coords_z_const[atom_id];
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

			// Capturing rotation vectors and angle
			float rotation_movingvec[3];

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
			{
Leonardo Solis's avatar
Leonardo Solis committed
171
				// Rotational genes in the Shoemake space are expressed in radians
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
				float u1 = genotype[3];
				float u2 = genotype[4];
				float u3 = genotype[5];

				// u1, u2, u3 should be within their valid range of [0,1]
				quatrot_left_q = native_sqrt(1 - u1) * native_sin(PI_TIMES_2*u2); 
				quatrot_left_x = native_sqrt(1 - u1) * native_cos(PI_TIMES_2*u2);
				quatrot_left_y = native_sqrt(u1)     * native_sin(PI_TIMES_2*u3);
				quatrot_left_z = native_sqrt(u1)     * native_cos(PI_TIMES_2*u3);

				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
			}
			else	// If rotating around rotatable bond
			{
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;

				float rotation_unitvec[3];
				rotation_unitvec[0] = rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = rotbonds_unit_vectors_const[3*rotbond_id+2];
				float rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;

				rotation_movingvec[0] = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = rotbonds_moving_vectors_const[3*rotbond_id+2];

				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];

				// Transforming torsion angles into quaternions
				// FIXME: add precision choices with preprocessor directives: 
				// NATIVE_PRECISION, HALF_PRECISION, Full precision
				rotation_angle  = native_divide(rotation_angle, 2.0f);
				float sin_angle = native_sin(rotation_angle);
				quatrot_left_q  = native_cos(rotation_angle);
				quatrot_left_x  = sin_angle*rotation_unitvec[0];
				quatrot_left_y  = sin_angle*rotation_unitvec[1];
				quatrot_left_z  = sin_angle*rotation_unitvec[2];
			}

			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
			{
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

				quatrot_left_q = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+1]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+3]-
						 ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+2]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+3]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+2]-
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
			}

			quatrot_temp_q = 0 -
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];

			atom_to_rotate [0] = 0 -
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
			atom_to_rotate [1] = 0 -
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
			atom_to_rotate [2] = 0 -
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;

			// Performing final movement and storing values
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
289
	// CALCULATING INTERMOLECULAR GRADIENTS
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
	// ================================================
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
	{
		uint atom_typeid = atom_types_const[atom_id];
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
		float q = atom_charges_const[atom_id];

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
			
			// Setting gradients (forces) penalties.
			// These are valid as long as they are high
			gradient_inter_x[atom_id] += 16777216.0f;
			gradient_inter_y[atom_id] += 16777216.0f;
			gradient_inter_z[atom_id] += 16777216.0f;
		}
		else
		{
			// Getting coordinates
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

			// Capturing affinity values
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

			// -------------------------------------------------------------------
			// Deltas dx, dy, dz are already normalized 
			// (by host/src/getparameters.cpp) in OCLaDock.
			// The correspondance between vertices in xyz axes is:
			// 0, 1, 2, 3, 4, 5, 6, 7  and  000, 100, 010, 001, 101, 110, 011, 111
			// -------------------------------------------------------------------
			/*
			    deltas: (x-x0)/(x1-x0), (y-y0...
			    vertices: (000, 100, 010, 001, 101, 110, 011, 111)        

				  Z
				  '
				  3 - - - - 6
				 /.        /|
				4 - - - - 7 |
				| '       | |
				| 0 - - - + 2 -- Y
				'/        |/
				1 - - - - 5
			       /
			      X
			*/

			// Intermediate values for vectors in x-direction
			float x10, x52, x43, x76;
			float vx_z0, vx_z1;

			// Intermediate values for vectors in y-direction
			float y20, y51, y63, y74;
			float vy_z0, vy_z1;

			// Intermediate values for vectors in z-direction
			float z30, z41, z62, z75;
			float vz_y0, vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "atype" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

Leonardo Solis's avatar
Leonardo Solis committed
393
			// Vector in x-direction
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
			/*
			x10 = grid[int(vertices[1])] - grid[int(vertices[0])] # z = 0
			x52 = grid[int(vertices[5])] - grid[int(vertices[2])] # z = 0
			x43 = grid[int(vertices[4])] - grid[int(vertices[3])] # z = 1
			x76 = grid[int(vertices[7])] - grid[int(vertices[6])] # z = 1
			vx_z0 = (1-yd) * x10 + yd * x52     #  z = 0
			vx_z1 = (1-yd) * x43 + yd * x76     #  z = 1
			gradient[0] = (1-zd) * vx_z0 + zd * vx_z1 
			*/

			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
412
			// Vector in y-direction
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
			/*
			y20 = grid[int(vertices[2])] - grid[int(vertices[0])] # z = 0
			y51 = grid[int(vertices[5])] - grid[int(vertices[1])] # z = 0
			y63 = grid[int(vertices[6])] - grid[int(vertices[3])] # z = 1
			y74 = grid[int(vertices[7])] - grid[int(vertices[4])] # z = 1
			vy_z0 = (1-xd) * y20 + xd * y51     #  z = 0
			y_z1 = (1-xd) * y63 + xd * y74     #  z = 1
			gradient[1] = (1-zd) * vy_z0 + zd * vy_z1
			*/

			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
431
			// Vectors in z-direction
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
			/*	
			z30 = grid[int(vertices[3])] - grid[int(vertices[0])] # y = 0
			z41 = grid[int(vertices[4])] - grid[int(vertices[1])] # y = 0
			z62 = grid[int(vertices[6])] - grid[int(vertices[2])] # y = 1
			z75 = grid[int(vertices[7])] - grid[int(vertices[5])] # y = 1
			vz_y0 = (1-xd) * z30 + xd * z41     # y = 0
			vz_y1 = (1-xd) * z62 + xd * z75     # y = 1
			gradient[2] = (1-yd) * vz_y0 + yd * vz_y1
			*/

			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "elec" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing electrostatic values
			atom_typeid = dockpars_num_of_atypes;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
469
			// Vector in x-direction
470
471
472
473
474
475
476
477
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
478
			// Vector in y-direction
479
480
481
482
483
484
485
486
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
487
			// Vectors in z-direction
488
489
490
491
492
493
494
495
496
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

			// -------------------------------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
497
			// Calculating gradients (forces) corresponding to 
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
			// "dsol" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing desolvation values
			atom_typeid = dockpars_num_of_atypes+1;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
515
			// Vector in x-direction
516
517
518
519
520
521
522
523
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
524
			// Vector in y-direction
525
526
527
528
529
530
531
532
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
533
			// Vectors in z-direction
534
535
536
537
538
539
540
541
542
543
544
545
546
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

			// -------------------------------------------------------------------
		}

	} // End atom_id for-loop (INTERMOLECULAR ENERGY)

547
548
549
550
	// Inter- and intra-molecular energy calculation
	// are independent from each other, so NO barrier is needed here.
  	// As these two require different operations,
	// they can be executed only sequentially on the GPU.
551
552

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
553
	// CALCULATING INTRAMOLECULAR GRADIENTS
554
555
556
	// ================================================
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
Leonardo Solis's avatar
Leonardo Solis committed
557
	          contributor_counter+= NUM_OF_THREADS_PER_BLOCK)
558
	{
559
		// Getting atom IDs
560
561
562
		uint atom1_id = intraE_contributors_const[3*contributor_counter];
		uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

Leonardo Solis's avatar
Leonardo Solis committed
563
564
565
566
567
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
568

569
		// Calculating atomic distance
570
571
572
573
574
		float atomic_distance = native_sqrt(subx*subx + suby*suby + subz*subz)*dockpars_grid_spacing;

		if (atomic_distance < 1.0f)
			atomic_distance = 1.0f;

575
		// Calculating gradient contributions
576
577
578
579
580
581
		if ((atomic_distance < 8.0f) && (atomic_distance < 20.48f))
		{
			// Getting type IDs
			uint atom1_typeid = atom_types_const[atom1_id];
			uint atom2_typeid = atom_types_const[atom2_id];

582
583
584
585
			// Calculating van der Waals / hydrogen bond term
			gradient_per_intracontributor[contributor_counter] += native_divide (-12*VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
									                     native_powr(atomic_distance, 13)
									       		    );
586

587
588
589
590
591
592
593
594
595
596
			if (intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
				gradient_per_intracontributor[contributor_counter] += native_divide (10*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										                     native_powr(atomic_distance, 11)
										                    );
			}
			else {	//van der Waals
				gradient_per_intracontributor[contributor_counter] += native_divide (6*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										                     native_powr(atomic_distance, 7)
										                    );
			}
597

598
599
			// Calculating electrostatic term
			// http://www.wolframalpha.com/input/?i=1%2F(x*(A%2B(B%2F(1%2BK*exp(-h*B*x)))))
Leonardo Solis's avatar
Leonardo Solis committed
600
			float upper = DIEL_A*native_powr(native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K, 2) + (DIEL_B)*native_exp(DIEL_B_TIMES_H*atomic_distance)*(DIEL_B_TIMES_H_TIMES_K*atomic_distance + native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K);
601
		
Leonardo Solis's avatar
Leonardo Solis committed
602
			float lower = native_powr(atomic_distance, 2) * native_powr(DIEL_A * (native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K) + DIEL_B * native_exp(DIEL_B_TIMES_H*atomic_distance), 2);
603

Leonardo Solis's avatar
Leonardo Solis committed
604
        		gradient_per_intracontributor[contributor_counter] +=  -dockpars_coeff_elec * atom_charges_const[atom1_id] * atom_charges_const[atom2_id] * native_divide (upper, lower);
605

606
607
608
609
610
611
			// Calculating desolvation term
			gradient_per_intracontributor[contributor_counter] += (
									       (dspars_S_const[atom1_typeid] + dockpars_qasp*fabs(atom_charges_const[atom1_id])) * dspars_V_const[atom2_typeid] +
							                       (dspars_S_const[atom2_typeid] + dockpars_qasp*fabs(atom_charges_const[atom2_id])) * dspars_V_const[atom1_typeid]
				        				      ) *
					                       			dockpars_coeff_desolv * -0.07716049382716049 * atomic_distance * native_exp(-0.038580246913580245*native_powr(atomic_distance, 2));
612

613
614
		}
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)
615

616
	barrier(CLK_LOCAL_MEM_FENCE);
617

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
	// Accumulating gradients of each atom from "gradient_per_intracontributor"
	if (get_local_id(0) == 0) {
		for (uint contributor_counter = 0;
			  contributor_counter < dockpars_num_of_intraE_contributors;
			  contributor_counter ++) {

			// Getting atom IDs
			uint atom1_id = intraE_contributors_const[3*contributor_counter];
			uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

			// Calculating xyz distances in Angstroms
			// between"atom1_id"-to-"atom2_id"
			float subx = (calc_coords_x[atom1_id] - calc_coords_x[atom2_id]) * dockpars_grid_spacing;
			float suby = (calc_coords_y[atom1_id] - calc_coords_y[atom2_id]) * dockpars_grid_spacing;
			float subz = (calc_coords_z[atom1_id] - calc_coords_z[atom2_id]) * dockpars_grid_spacing;

			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
			gradient_intra_x[atom1_id] += gradient_per_intracontributor[contributor_counter] * subx;
			gradient_intra_y[atom1_id] += gradient_per_intracontributor[contributor_counter] * suby;
			gradient_intra_z[atom1_id] += gradient_per_intracontributor[contributor_counter] * subz;

			gradient_intra_x[atom2_id] -= gradient_per_intracontributor[contributor_counter] * subx;
			gradient_intra_y[atom2_id] -= gradient_per_intracontributor[contributor_counter] * suby;
			gradient_intra_z[atom2_id] -= gradient_per_intracontributor[contributor_counter] * subz;
		}
	}
	
647
648
649

	barrier(CLK_LOCAL_MEM_FENCE);

650
651
652
653
	// Accumulating inter- and intramolecular gradients
	for (uint atom_cnt = get_local_id(0);
		  atom_cnt < dockpars_num_of_atoms;
		  atom_cnt+= NUM_OF_THREADS_PER_BLOCK) {
654
655
656
		gradient_x[atom_cnt] = gradient_inter_x[atom_cnt] + gradient_intra_x[atom_cnt];
		gradient_y[atom_cnt] = gradient_inter_y[atom_cnt] + gradient_intra_y[atom_cnt];
		gradient_z[atom_cnt] = gradient_inter_z[atom_cnt] + gradient_intra_z[atom_cnt];
657
658
	}

659
660
	barrier(CLK_LOCAL_MEM_FENCE);

661
	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
662
	// Obtaining translation-related gradients
663
664
665
666
667
	// ------------------------------------------
	if (get_local_id(0) == 0) {
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
668
669
670
			gradient_genotype[0] += gradient_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_z[lig_atom_id]; // gradient for gene 2: gene z
671
		}
672
673
674
675
676
677

		/*
		printf("gradient_x:%f\n", gradient_genotype [0]);
		printf("gradient_y:%f\n", gradient_genotype [1]);
		printf("gradient_z:%f\n", gradient_genotype [2]);
		*/
678
679
680
	}

	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
681
682
	// Obtaining rotation-related gradients
	// ------------------------------------------ 
683
684
685
686
687
688
689
690
691
692
693
				
	// Transform gradients_inter_{x|y|z} 
	// into local_gradients[i] (with four quaternion genes)
	// Derived from autodockdev/motions.py/forces_to_delta_genes()

	// Transform local_gradients[i] (with four quaternion genes)
	// into local_gradients[i] (with three Shoemake genes)
	// Derived from autodockdev/motions.py/_get_cube3_gradient()
	// ------------------------------------------
	if (get_local_id(0) == 1) {

694
		float3 torque_rot = (float3)(0.0f, 0.0f, 0.0f);
695

696
697
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "initial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);

Leonardo Solis's avatar
Leonardo Solis committed
698
		// Center of rotation 
699
700
		// In getparameters.cpp, it indicates 
		// translation genes are in grid spacing (instead of Angstroms)
Leonardo Solis's avatar
Leonardo Solis committed
701
		float3 about;
702
703
704
705
706
707

//#if 0
		about.x = 30/*genotype[0]*/;
		about.y = 30/*genotype[1]*/;
		about.z = 30/*genotype[2]*/;
//#endif	
708
709
710
		// Temporal variable to calculate translation differences.
		// They are converted back to Angstroms here
		float3 r;
711
			
712
713
714
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
Leonardo Solis's avatar
Leonardo Solis committed
715
716
717
			r.x = (calc_coords_x[lig_atom_id] - about.x) * dockpars_grid_spacing; 
			r.y = (calc_coords_y[lig_atom_id] - about.y) * dockpars_grid_spacing;  
			r.z = (calc_coords_z[lig_atom_id] - about.z) * dockpars_grid_spacing; 
718

719
720
721
722
723
724
725
726
			float3 force = (float3)(-gradient_x[lig_atom_id], -gradient_y[lig_atom_id], -gradient_z[lig_atom_id]) / dockpars_grid_spacing;
			torque_rot += cross(r, force);
			printf("%-20s %-10u\n", "contrib. of atom-id: ", lig_atom_id);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "r             : ", r.x, r.y, r.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "force         : ", force.x, force.y, force.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "partial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
			printf("\n");
		}
727

728
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "final torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
729
730
731

		// Derived from rotation.py/axisangle_to_q()
		// genes[3:7] = rotation.axisangle_to_q(torque, rad)
732
		float torque_length = fast_length(torque_rot);
733

734
735
736
737
738
739
740
741
742
743
		// Infinitesimal rotation in radians
		const float infinitesimal_radian = 1E-8;

		// Finding the quaternion that performs
		// the infinitesimal rotation around torque axis
		float4 quat_torque;
		quat_torque.w = native_cos(infinitesimal_radian*0.5f);
		quat_torque.x = fast_normalize(torque_rot).x * native_sin(infinitesimal_radian*0.5f);
		quat_torque.y = fast_normalize(torque_rot).y * native_sin(infinitesimal_radian*0.5f);
		quat_torque.z = fast_normalize(torque_rot).z * native_sin(infinitesimal_radian*0.5f);
744

Leonardo Solis's avatar
Leonardo Solis committed
745
		// Converting quaternion gradients into Shoemake gradients 
746
747
		// Derived from autodockdev/motion.py/_get_cube3_gradient

748
		// This is where we are in Shoemake space
749
750
751
752
753
		float current_u1, current_u2, current_u3;
		current_u1 = genotype[3]; // check very initial input Shoemake genes
		current_u2 = genotype[4];
		current_u3 = genotype[5];

Leonardo Solis's avatar
Leonardo Solis committed
754
		// This is where we are in quaternion space
755
		// current_q = cube3_to_quaternion(current_u)
756
757
758
759
760
		float4 current_q;
		current_q.w = native_sqrt(1-current_u1) * native_sin(PI_TIMES_2*current_u2);
		current_q.x = native_sqrt(1-current_u1) * native_cos(PI_TIMES_2*current_u2);
		current_q.y = native_sqrt(current_u1)   * native_sin(PI_TIMES_2*current_u3);
		current_q.z = native_sqrt(current_u1)   * native_cos(PI_TIMES_2*current_u3);
761

Leonardo Solis's avatar
Leonardo Solis committed
762
		// This is where we want to be in quaternion space
763
		float4 target_q;
764
765
766
767

		// target_q = rotation.q_mult(q, current_q)
		// Derived from autodockdev/rotation.py/q_mult()
		// In our terms means q_mult(quat_{w|x|y|z}, current_q{w|x|y|z})
768
769
770
771
		target_q.w = quat_torque.w*current_q.w - quat_torque.x*current_q.x - quat_torque.y*current_q.y - quat_torque.z*current_q.z;// w
		target_q.x = quat_torque.w*current_q.x + quat_torque.x*current_q.w + quat_torque.y*current_q.z - quat_torque.z*current_q.y;// x
		target_q.y = quat_torque.w*current_q.y + quat_torque.y*current_q.w + quat_torque.z*current_q.x - quat_torque.x*current_q.z;// y
		target_q.z = quat_torque.w*current_q.z + quat_torque.z*current_q.w + quat_torque.x*current_q.y - quat_torque.y*current_q.x;// z
772

773
		// This is where we want to be in Shoemake space
774
775
776
777
778
		float target_u1, target_u2, target_u3;

		// target_u = quaternion_to_cube3(target_q)
		// Derived from autodockdev/motions.py/quaternion_to_cube3()
		// In our terms means quaternion_to_cube3(target_q{w|x|y|z})
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
		target_u1 = target_q.y*target_q.y + target_q.z*target_q.z;
		target_u2 = atan2(target_q.w, target_q.x);
		target_u3 = atan2(target_q.y, target_q.z);

		if (target_u2 < 0.0f) {
			target_u2 += PI_TIMES_2;
		}

		if (target_u2 > PI_TIMES_2) {
			target_u2 -= PI_TIMES_2;
		}

		if (target_u3 < 0.0f) {
			target_u3 += PI_TIMES_2;
		}

		if (target_u3 > PI_TIMES_2) {
			target_u3 -= PI_TIMES_2;
		}

		target_u2 = target_u2 / PI_TIMES_2;
		target_u3 = target_u3 / PI_TIMES_2;
		

   		// The infinitesimal rotation will produce an infinitesimal displacement
    		// in shoemake space. This is to guarantee that the direction of
    		// the displacement in shoemake space is not distorted.
    		// The correct amount of displacement in shoemake space is obtained
		// by multiplying the infinitesimal displacement by shoemake_scaling:
		float shoemake_scaling = torque_length / infinitesimal_radian;

810

Leonardo Solis's avatar
Leonardo Solis committed
811
		// Derivates in cube3
812
		float grad_u1, grad_u2, grad_u3;
813
814
815
		grad_u1 = shoemake_scaling * (target_u1 - current_u1);
		grad_u2 = shoemake_scaling * (target_u2 - current_u2);
		grad_u3 = shoemake_scaling * (target_u3 - current_u3);
816
			
Leonardo Solis's avatar
Leonardo Solis committed
817
		// Empirical scaling
818
		float temp_u1 = genotype[3];
819
			
820
821
		if (0.0f < temp_u1 < 1.0f){
			grad_u1 *= ((1.0f/temp_u1) + (1.0f/(1.0f-temp_u1)));
822
		}
823
824
		grad_u2 *= 4.0f * (1.0f-temp_u1);
		grad_u3 *= 4.0f * temp_u1;
825
			
Leonardo Solis's avatar
Leonardo Solis committed
826
		// Setting gradient rotation-related genotypes in cube3
827
828
829
830
831
832
833
834
835
		gradient_genotype[3] = grad_u1;
		gradient_genotype[4] = grad_u2;
		gradient_genotype[5] = grad_u3;

		/*
		printf("gradient_shoemake_u1:%f\n", gradient_genotype [3]);
		printf("gradient_shoemake_u2:%f\n", gradient_genotype [4]);
		printf("gradient_shoemake_u3:%f\n", gradient_genotype [5]);
		*/
836
837
	}

Leonardo Solis's avatar
Leonardo Solis committed
838
839
840
	// ------------------------------------------
	// Obtaining torsion-related gradients
	// ------------------------------------------
841
842
843
844
845
846
847
848
849
850
851
852
853
854
	if (get_local_id(0) == 2) {

		for (uint rotbond_id = 0;
			  rotbond_id < dockpars_num_of_genes-6;
			  rotbond_id ++) {

			float3 rotation_unitvec;
			rotation_unitvec.x = rotbonds_unit_vectors_const[3*rotbond_id];
			rotation_unitvec.y = rotbonds_unit_vectors_const[3*rotbond_id+1];
			rotation_unitvec.z = rotbonds_unit_vectors_const[3*rotbond_id+2];

			// Torque of torsions
			float3 torque_tor = (float3)(0.0f, 0.0f, 0.0f);

855
			// Iterating over each ligand atom
856
857
858
859
			for (uint lig_atom_id = 0;
				  lig_atom_id<dockpars_num_of_atoms;
				  lig_atom_id++) {

Leonardo Solis's avatar
Leonardo Solis committed
860
				// Calculating torque on point "A" 
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
				// (could be any other point "B" along the rotation axis)
				float3 atom_coords = {calc_coords_x[lig_atom_id], 
					              calc_coords_y[lig_atom_id], 
					              calc_coords_z[lig_atom_id]};

				float3 atom_force  = {gradient_inter_x[lig_atom_id],
					              gradient_inter_y[lig_atom_id],
				                      gradient_inter_z[lig_atom_id]};

				float3 rotation_movingvec;
				rotation_movingvec.x = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec.y = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec.z = rotbonds_moving_vectors_const[3*rotbond_id+2];

				torque_tor = cross((atom_coords-rotation_movingvec), atom_force);
			}

878
			// Projecting torque on rotation axis
879
880
881
882
883
			float torque_on_axis = dot(rotation_unitvec, torque_tor);

			// Assignment of gene-based gradient
			gradient_genotype[rotbond_id+6] = torque_on_axis;

884
885
886
887
			/*
			printf("gradient_torsion [%u] :%f\n", rotbond_id+6, gradient_genotype [rotbond_id+6]);
			*/
		} // End of iterations over rotatable bonds
888
889
890
	}

}