calcgradient.cl 42.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/*
#include "calcenergy_basic.h"
*/
// All related pragmas are in defines.h (accesible by host and device code)

Leonardo Solis's avatar
Leonardo Solis committed
29
30
31
32
33
34
35
36

// The GPU device function calculates the energy's gradient (forces or derivatives) 
// of the entity described by genotype, dockpars and the ligand-data
// arrays in constant memory and returns it in the "gradient_genotype" parameter. 
// The parameter "run_id" has to be equal to the ID of the run 
// whose population includes the current entity (which can be determined with get_group_id(0)), 
// since this determines which reference orientation should be used.

37
38
39

//#define DEBUG_GRAD_TRANSLATION_GENES
//#define DEBUG_GRAD_ROTATION_GENES
Leonardo Solis's avatar
Leonardo Solis committed
40
//#define DEBUG_GRAD_TORSION_GENES
41
//#define DEBUG_ENERGY_KERNEL5
42

43
44
45
46
47
48
void gpu_calc_gradient(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
49
50
51
								    		// g1 = gridsize_x
				uint   dockpars_gridsize_x_times_y, 		// g2 = gridsize_x * gridsize_y
				uint   dockpars_gridsize_x_times_y_times_z,	// g3 = gridsize_x * gridsize_y * gridsize_z
52
53
54
55
56
57
58
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
59

Leonardo Solis's avatar
Leonardo Solis committed
60
61
62
63
				// Some OpenCL compilers don't allow declaring 
				// local variables within non-kernel functions.
				// These local variables must be declared in a kernel, 
				// and then passed to non-kernel functions.
64
		    	__local float* genotype,
65
			__local float* energy,
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,

	             __constant float* atom_charges_const,
                     __constant char*  atom_types_const,
                     __constant char*  intraE_contributors_const,
                     __constant float* VWpars_AC_const,
                     __constant float* VWpars_BD_const,
                     __constant float* dspars_S_const,
                     __constant float* dspars_V_const,
                     __constant int*   rotlist_const,
                     __constant float* ref_coords_x_const,
                     __constant float* ref_coords_y_const,
                     __constant float* ref_coords_z_const,
                     __constant float* rotbonds_moving_vectors_const,
                     __constant float* rotbonds_unit_vectors_const,
85
86
87
88
                     __constant float* ref_orientation_quats_const,
		     __constant int*   rotbonds_const,
		     __constant int*   rotbonds_atoms_const,
		     __constant int*   num_rotating_atoms_per_rotbond_const
89
90
91
92
93
94
95
96
97
98
99
100

		    // Gradient-related arguments
		    // Calculate gradients (forces) for intermolecular energy
		    // Derived from autodockdev/maps.py
		    // "is_enabled_gradient_calc": enables gradient calculation.
		    // In Genetic-Generation: no need for gradients
		    // In Gradient-Minimizer: must calculate gradients
			,
			    int    dockpars_num_of_genes,
	    	    __local float* gradient_inter_x,
	            __local float* gradient_inter_y,
	            __local float* gradient_inter_z,
101
102
103
		    __local float* gradient_intra_x,
		    __local float* gradient_intra_y,
		    __local float* gradient_intra_z,
104
105
106
		    __local float* gradient_x,
		    __local float* gradient_y,
		    __local float* gradient_z,
107
	            __local float* gradient_per_intracontributor,
108
109
110
		    __local float* gradient_genotype			
)
{
111
	// Initializing gradients (forces) 
112
113
114
115
	// Derived from autodockdev/maps.py
	for (uint atom_id = get_local_id(0);
		  atom_id < dockpars_num_of_atoms;
		  atom_id+= NUM_OF_THREADS_PER_BLOCK) {
116
		// Intermolecular gradients
117
118
119
		gradient_inter_x[atom_id] = 0.0f;
		gradient_inter_y[atom_id] = 0.0f;
		gradient_inter_z[atom_id] = 0.0f;
120
121
122
123
124
125
		// Intramolecular gradients
		gradient_intra_x[atom_id] = 0.0f;
		gradient_intra_y[atom_id] = 0.0f;
		gradient_intra_z[atom_id] = 0.0f;
	}

Leonardo Solis's avatar
Leonardo Solis committed
126
	// Initializing gradients per intramolecular contributor pairs 
127
128
129
130
	for (uint intracontrib_atompair_id = get_local_id(0);
		  intracontrib_atompair_id < dockpars_num_of_intraE_contributors;
		  intracontrib_atompair_id+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_per_intracontributor[intracontrib_atompair_id] = 0.0f;
131
132
	}

Leonardo Solis's avatar
Leonardo Solis committed
133
134
135
136
137
138
139
140
	// Initializing gradient genotypes
	for (uint gene_cnt = get_local_id(0);
		  gene_cnt < dockpars_num_of_genes;
		  gene_cnt+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_genotype[gene_cnt] = 0.0f;
	}
	barrier(CLK_LOCAL_MEM_FENCE);

141
	uchar g1 = dockpars_gridsize_x;
142
143
	uint  g2 = dockpars_gridsize_x_times_y /*dockpars_gridsize_x * dockpars_gridsize_y*/;
  	uint  g3 = dockpars_gridsize_x_times_y_times_z /*dockpars_gridsize_x * dockpars_gridsize_y * dockpars_gridsize_z*/;
144
145

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
146
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
	// ================================================
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
	{
		int rotation_list_element = rotlist_const[rotation_counter];

		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
		{
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];

			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
			{
				atom_to_rotate[0] = ref_coords_x_const[atom_id];
				atom_to_rotate[1] = ref_coords_y_const[atom_id];
				atom_to_rotate[2] = ref_coords_z_const[atom_id];
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

			// Capturing rotation vectors and angle
			float rotation_movingvec[3];

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
			{
Leonardo Solis's avatar
Leonardo Solis committed
182
				// Rotational genes in the Shoemake space are expressed in radians
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
				float u1 = genotype[3];
				float u2 = genotype[4];
				float u3 = genotype[5];

				// u1, u2, u3 should be within their valid range of [0,1]
				quatrot_left_q = native_sqrt(1 - u1) * native_sin(PI_TIMES_2*u2); 
				quatrot_left_x = native_sqrt(1 - u1) * native_cos(PI_TIMES_2*u2);
				quatrot_left_y = native_sqrt(u1)     * native_sin(PI_TIMES_2*u3);
				quatrot_left_z = native_sqrt(u1)     * native_cos(PI_TIMES_2*u3);

				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
			}
			else	// If rotating around rotatable bond
			{
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;

				float rotation_unitvec[3];
				rotation_unitvec[0] = rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = rotbonds_unit_vectors_const[3*rotbond_id+2];
				float rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;

				rotation_movingvec[0] = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = rotbonds_moving_vectors_const[3*rotbond_id+2];

				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];

				// Transforming torsion angles into quaternions
				rotation_angle  = native_divide(rotation_angle, 2.0f);
				float sin_angle = native_sin(rotation_angle);
				quatrot_left_q  = native_cos(rotation_angle);
				quatrot_left_x  = sin_angle*rotation_unitvec[0];
				quatrot_left_y  = sin_angle*rotation_unitvec[1];
				quatrot_left_z  = sin_angle*rotation_unitvec[2];
			}

			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
			{
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

				quatrot_left_q = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+1]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+3]-
						 ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+2]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+3]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+2]-
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
			}

			quatrot_temp_q = 0 -
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];

			atom_to_rotate [0] = 0 -
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
			atom_to_rotate [1] = 0 -
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
			atom_to_rotate [2] = 0 -
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;

			// Performing final movement and storing values
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
298
	// CALCULATING INTERMOLECULAR GRADIENTS
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
	// ================================================
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
	{
		uint atom_typeid = atom_types_const[atom_id];
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
		float q = atom_charges_const[atom_id];

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
			
			// Setting gradients (forces) penalties.
			// These are valid as long as they are high
			gradient_inter_x[atom_id] += 16777216.0f;
			gradient_inter_y[atom_id] += 16777216.0f;
			gradient_inter_z[atom_id] += 16777216.0f;
		}
		else
		{
			// Getting coordinates
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

333
334
			//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "dx,dy,dz", atom_id, dx, dy, dz);

335
336
337
338
339
340
341
342
343
344
345
			// Calculating interpolation weights
			float weights[2][2][2];
			weights [0][0][0] = (1-dx)*(1-dy)*(1-dz);
			weights [1][0][0] = dx*(1-dy)*(1-dz);
			weights [0][1][0] = (1-dx)*dy*(1-dz);
			weights [1][1][0] = dx*dy*(1-dz);
			weights [0][0][1] = (1-dx)*(1-dy)*dz;
			weights [1][0][1] = dx*(1-dy)*dz;
			weights [0][1][1] = (1-dx)*dy*dz;
			weights [1][1][1] = dx*dy*dz;

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
			// Capturing affinity values
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

			// -------------------------------------------------------------------
			// Deltas dx, dy, dz are already normalized 
			// (by host/src/getparameters.cpp) in OCLaDock.
			// The correspondance between vertices in xyz axes is:
			// 0, 1, 2, 3, 4, 5, 6, 7  and  000, 100, 010, 001, 101, 110, 011, 111
			// -------------------------------------------------------------------
			/*
			    deltas: (x-x0)/(x1-x0), (y-y0...
			    vertices: (000, 100, 010, 001, 101, 110, 011, 111)        

				  Z
				  '
				  3 - - - - 6
				 /.        /|
				4 - - - - 7 |
				| '       | |
				| 0 - - - + 2 -- Y
				'/        |/
				1 - - - - 5
			       /
			      X
			*/

			// Intermediate values for vectors in x-direction
			float x10, x52, x43, x76;
			float vx_z0, vx_z1;

			// Intermediate values for vectors in y-direction
			float y20, y51, y63, y74;
			float vy_z0, vy_z1;

			// Intermediate values for vectors in z-direction
			float z30, z41, z62, z75;
			float vz_y0, vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "atype" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

Leonardo Solis's avatar
Leonardo Solis committed
415
			// Vector in x-direction
416
417
418
419
420
421
422
423
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
424
			// Vector in y-direction
425
426
427
428
429
430
431
432
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
433
			// Vectors in z-direction
434
435
436
437
438
439
440
441
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

442
443
			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "atom aff", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "elec" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing electrostatic values
			atom_typeid = dockpars_num_of_atypes;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
463
			// Vector in x-direction
464
465
466
467
468
469
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
470
			gradient_inter_x[atom_id] += q * ((1 - dz) * vx_z0 + dz * vx_z1);
471

Leonardo Solis's avatar
Leonardo Solis committed
472
			// Vector in y-direction
473
474
475
476
477
478
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
479
			gradient_inter_y[atom_id] += q *((1 - dz) * vy_z0 + dz * vy_z1);
480

Leonardo Solis's avatar
Leonardo Solis committed
481
			// Vectors in z-direction
482
483
484
485
486
487
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
488
489
490
			gradient_inter_z[atom_id] += q *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "elec", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
491
492

			// -------------------------------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
493
			// Calculating gradients (forces) corresponding to 
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
			// "dsol" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing desolvation values
			atom_typeid = dockpars_num_of_atypes+1;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
511
			// Vector in x-direction
512
513
514
515
516
517
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
518
			gradient_inter_x[atom_id] += fabs(q) * ((1 - dz) * vx_z0 + dz * vx_z1);
519

Leonardo Solis's avatar
Leonardo Solis committed
520
			// Vector in y-direction
521
522
523
524
525
526
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
527
			gradient_inter_y[atom_id] += fabs(q) *((1 - dz) * vy_z0 + dz * vy_z1);
528

Leonardo Solis's avatar
Leonardo Solis committed
529
			// Vectors in z-direction
530
531
532
533
534
535
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
536
537
538
			gradient_inter_z[atom_id] += fabs(q) *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "desol", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
539
540
541
542
543
			// -------------------------------------------------------------------
		}

	} // End atom_id for-loop (INTERMOLECULAR ENERGY)

544
545
546
547
	// Inter- and intra-molecular energy calculation
	// are independent from each other, so NO barrier is needed here.
  	// As these two require different operations,
	// they can be executed only sequentially on the GPU.
548
549

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
550
	// CALCULATING INTRAMOLECULAR GRADIENTS
551
552
553
	// ================================================
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
Leonardo Solis's avatar
Leonardo Solis committed
554
	          contributor_counter+= NUM_OF_THREADS_PER_BLOCK)
555
	{
556
		// Getting atom IDs
557
558
		uint atom1_id = intraE_contributors_const[3*contributor_counter];
		uint atom2_id = intraE_contributors_const[3*contributor_counter+1];
Leonardo Solis's avatar
Leonardo Solis committed
559
560
561
562
	
		/*
		printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
		*/
563
		
Leonardo Solis's avatar
Leonardo Solis committed
564
565
566
567
568
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
569

570
		// Calculating atomic distance
571
572
573
574
575
		float atomic_distance = native_sqrt(subx*subx + suby*suby + subz*subz)*dockpars_grid_spacing;

		if (atomic_distance < 1.0f)
			atomic_distance = 1.0f;

576
		// Calculating gradient contributions
577
578
579
580
581
		if ((atomic_distance < 8.0f) && (atomic_distance < 20.48f))
		{
			// Getting type IDs
			uint atom1_typeid = atom_types_const[atom1_id];
			uint atom2_typeid = atom_types_const[atom2_id];
Leonardo Solis's avatar
Leonardo Solis committed
582
			//printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
583

584
585
586
587
			// Calculating van der Waals / hydrogen bond term
			gradient_per_intracontributor[contributor_counter] += native_divide (-12*VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
									                     native_powr(atomic_distance, 13)
									       		    );
588

589
590
591
			if (intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
				gradient_per_intracontributor[contributor_counter] += native_divide (10*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										                     native_powr(atomic_distance, 11)
592
												    );
593
594
595
596
597
598
			}
			else {	//van der Waals
				gradient_per_intracontributor[contributor_counter] += native_divide (6*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										                     native_powr(atomic_distance, 7)
										                    );
			}
599

600
601
			// Calculating electrostatic term
			// http://www.wolframalpha.com/input/?i=1%2F(x*(A%2B(B%2F(1%2BK*exp(-h*B*x)))))
Leonardo Solis's avatar
Leonardo Solis committed
602
			float upper = DIEL_A*native_powr(native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K, 2) + (DIEL_B)*native_exp(DIEL_B_TIMES_H*atomic_distance)*(DIEL_B_TIMES_H_TIMES_K*atomic_distance + native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K);
603
		
Leonardo Solis's avatar
Leonardo Solis committed
604
			float lower = native_powr(atomic_distance, 2) * native_powr(DIEL_A * (native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K) + DIEL_B * native_exp(DIEL_B_TIMES_H*atomic_distance), 2);
605

Leonardo Solis's avatar
Leonardo Solis committed
606
        		gradient_per_intracontributor[contributor_counter] +=  -dockpars_coeff_elec * atom_charges_const[atom1_id] * atom_charges_const[atom2_id] * native_divide (upper, lower);
607

608
609
610
611
612
613
			// Calculating desolvation term
			gradient_per_intracontributor[contributor_counter] += (
									       (dspars_S_const[atom1_typeid] + dockpars_qasp*fabs(atom_charges_const[atom1_id])) * dspars_V_const[atom2_typeid] +
							                       (dspars_S_const[atom2_typeid] + dockpars_qasp*fabs(atom_charges_const[atom2_id])) * dspars_V_const[atom1_typeid]
				        				      ) *
					                       			dockpars_coeff_desolv * -0.07716049382716049 * atomic_distance * native_exp(-0.038580246913580245*native_powr(atomic_distance, 2));
614

615
		}
616

617
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)
618

619
	barrier(CLK_LOCAL_MEM_FENCE);
620

621
	// Accumulating gradients from "gradient_per_intracontributor" for each each
622
623
624
625
626
627
628
629
630
	if (get_local_id(0) == 0) {
		for (uint contributor_counter = 0;
			  contributor_counter < dockpars_num_of_intraE_contributors;
			  contributor_counter ++) {

			// Getting atom IDs
			uint atom1_id = intraE_contributors_const[3*contributor_counter];
			uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

631
632
633
634
635
636
			// Calculating xyz distances in Angstroms of vector
			// that goes from "atom1_id"-to-"atom2_id"
			float subx = (calc_coords_x[atom2_id] - calc_coords_x[atom1_id]);
			float suby = (calc_coords_y[atom2_id] - calc_coords_y[atom1_id]);
			float subz = (calc_coords_z[atom2_id] - calc_coords_z[atom1_id]);
			float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
637

638
639
640
641
			float subx_div_dist = native_divide(subx, dist);
			float suby_div_dist = native_divide(suby, dist);
			float subz_div_dist = native_divide(subz, dist);

642
643
644
			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
645
646
647
			gradient_intra_x[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom1_id] -= gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subz_div_dist;
648

649
650
651
			gradient_intra_x[atom2_id] += gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom2_id] += gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom2_id] += gradient_per_intracontributor[contributor_counter] * subz_div_dist;
652
653

			//printf("%-20s %-10u %-5u %-5u %-10.8f\n", "grad_intracontrib", contributor_counter, atom1_id, atom2_id, gradient_per_intracontributor[contributor_counter]);
654
655
656
		}
	}
	
657
658
659

	barrier(CLK_LOCAL_MEM_FENCE);

660
661
662
663
	// Accumulating inter- and intramolecular gradients
	for (uint atom_cnt = get_local_id(0);
		  atom_cnt < dockpars_num_of_atoms;
		  atom_cnt+= NUM_OF_THREADS_PER_BLOCK) {
664
665
666
667
668
669

		// Grid gradients were calculated in the grid space,
		// so they have to be put back in Angstrom.

		// Intramolecular gradients were already in Angstrom,
		// so no scaling for them is required.
670
671
672
		gradient_inter_x[atom_cnt] = native_divide(gradient_inter_x[atom_cnt], dockpars_grid_spacing);
		gradient_inter_y[atom_cnt] = native_divide(gradient_inter_y[atom_cnt], dockpars_grid_spacing);
		gradient_inter_z[atom_cnt] = native_divide(gradient_inter_z[atom_cnt], dockpars_grid_spacing);
673

674
675
676
		gradient_x[atom_cnt] = gradient_inter_x[atom_cnt] + gradient_intra_x[atom_cnt];
		gradient_y[atom_cnt] = gradient_inter_y[atom_cnt] + gradient_intra_y[atom_cnt];
		gradient_z[atom_cnt] = gradient_inter_z[atom_cnt] + gradient_intra_z[atom_cnt];
677
	
678
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_grid", atom_cnt, gradient_inter_x[atom_cnt], gradient_inter_y[atom_cnt], gradient_inter_z[atom_cnt]);
679
680
681
682
683

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_intra", atom_cnt, gradient_intra_x[atom_cnt], gradient_intra_y[atom_cnt], gradient_intra_z[atom_cnt]);

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "calc_coords", atom_cnt, calc_coords_x[atom_cnt], calc_coords_y[atom_cnt], calc_coords_z[atom_cnt]);

684
685
	}

686
687
	barrier(CLK_LOCAL_MEM_FENCE);

688
	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
689
	// Obtaining translation-related gradients
690
691
692
693
694
	// ------------------------------------------
	if (get_local_id(0) == 0) {
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
695
696
697
			gradient_genotype[0] += gradient_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_z[lig_atom_id]; // gradient for gene 2: gene z
698
		}
699

700
701
702
703
704
705
706
707
708
		// Scaling gradient for translational genes as 
		// their corresponding gradients were calculated in the space 
		// where these genes are in Angstrom,
		// but OCLaDock translational genes are within in grids
		gradient_genotype[0] *= dockpars_grid_spacing;
		gradient_genotype[1] *= dockpars_grid_spacing;
		gradient_genotype[2] *= dockpars_grid_spacing;

		#if defined (DEBUG_GRAD_TRANSLATION_GENES)
709
710
711
		printf("gradient_x:%f\n", gradient_genotype [0]);
		printf("gradient_y:%f\n", gradient_genotype [1]);
		printf("gradient_z:%f\n", gradient_genotype [2]);
712
		#endif
713
714
715
	}

	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
716
717
	// Obtaining rotation-related gradients
	// ------------------------------------------ 
718
719
720
721
722
723
724
725
726
727
728
				
	// Transform gradients_inter_{x|y|z} 
	// into local_gradients[i] (with four quaternion genes)
	// Derived from autodockdev/motions.py/forces_to_delta_genes()

	// Transform local_gradients[i] (with four quaternion genes)
	// into local_gradients[i] (with three Shoemake genes)
	// Derived from autodockdev/motions.py/_get_cube3_gradient()
	// ------------------------------------------
	if (get_local_id(0) == 1) {

729
730
731
732
		float3 torque_rot;
		torque_rot.x = 0.0f;
		torque_rot.y = 0.0f;
		torque_rot.z = 0.0f;
733

734
		#if defined (DEBUG_GRAD_ROTATION_GENES)
735
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "initial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
736
		#endif
737

738
		// Declaring a variable to hold the center of rotation 
739
740
		// In getparameters.cpp, it indicates 
		// translation genes are in grid spacing (instead of Angstroms)
Leonardo Solis's avatar
Leonardo Solis committed
741
		float3 about;
742
743
744
		about.x = genotype[0];
		about.y = genotype[1];
		about.z = genotype[2];
745
	
746
747
748
		// Temporal variable to calculate translation differences.
		// They are converted back to Angstroms here
		float3 r;
749
			
750
751
752
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
Leonardo Solis's avatar
Leonardo Solis committed
753
754
755
			r.x = (calc_coords_x[lig_atom_id] - about.x) * dockpars_grid_spacing; 
			r.y = (calc_coords_y[lig_atom_id] - about.y) * dockpars_grid_spacing;  
			r.z = (calc_coords_z[lig_atom_id] - about.z) * dockpars_grid_spacing; 
756

757
758
759
760
761
			float3 force;
			force.x	= gradient_x[lig_atom_id];
			force.y	= gradient_y[lig_atom_id]; 
			force.z	= gradient_z[lig_atom_id];

762
			torque_rot += cross(r, force);
763
764

			#if defined (DEBUG_GRAD_ROTATION_GENES)
765
766
767
768
769
			printf("%-20s %-10u\n", "contrib. of atom-id: ", lig_atom_id);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "r             : ", r.x, r.y, r.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "force         : ", force.x, force.y, force.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "partial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
			printf("\n");
770
			#endif
771
		}
772

773
		#if defined (DEBUG_GRAD_ROTATION_GENES)
774
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "final torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
775
		#endif
776
777
778

		// Derived from rotation.py/axisangle_to_q()
		// genes[3:7] = rotation.axisangle_to_q(torque, rad)
779
		float torque_length = fast_length(torque_rot);
780
781
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
782
		printf("%-20s %-10.5f\n", "torque length: ", torque_length);
783
		#endif
784

785
		/*
786
		// Infinitesimal rotation in radians
787
		const float infinitesimal_radian = 1E-5;
788
		*/
789
790
791
792

		// Finding the quaternion that performs
		// the infinitesimal rotation around torque axis
		float4 quat_torque;
793
794
795
796
797
798
799
800
801
802
803
		#if 0
		quat_torque.w = native_cos(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.x = fast_normalize(torque_rot).x * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.y = fast_normalize(torque_rot).y * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.z = fast_normalize(torque_rot).z * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		#endif

		quat_torque.w = COS_HALF_INFINITESIMAL_RADIAN;
		quat_torque.x = fast_normalize(torque_rot).x * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.y = fast_normalize(torque_rot).y * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.z = fast_normalize(torque_rot).z * SIN_HALF_INFINITESIMAL_RADIAN;
804
805

		#if defined (DEBUG_GRAD_ROTATION_GENES)
806
		printf("%-20s %-10.5f %-10.5f %-10.5f %-10.5f\n", "quat_torque (w,x,y,z): ", quat_torque.w, quat_torque.x, quat_torque.y, quat_torque.z);
807
		#endif
808

Leonardo Solis's avatar
Leonardo Solis committed
809
		// Converting quaternion gradients into Shoemake gradients 
810
811
		// Derived from autodockdev/motion.py/_get_cube3_gradient

812
		// This is where we are in Shoemake space
813
814
815
816
		float current_u1, current_u2, current_u3;
		current_u1 = genotype[3]; // check very initial input Shoemake genes
		current_u2 = genotype[4];
		current_u3 = genotype[5];
817
818
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
819
		printf("%-30s %-10.5f %-10.5f %-10.5f\n", "current_u (1,2,3): ", genotype[3], genotype[4], genotype[5]);
820
		#endif		
821

Leonardo Solis's avatar
Leonardo Solis committed
822
		// This is where we are in quaternion space
823
		// current_q = cube3_to_quaternion(current_u)
824
825
826
827
828
		float4 current_q;
		current_q.w = native_sqrt(1-current_u1) * native_sin(PI_TIMES_2*current_u2);
		current_q.x = native_sqrt(1-current_u1) * native_cos(PI_TIMES_2*current_u2);
		current_q.y = native_sqrt(current_u1)   * native_sin(PI_TIMES_2*current_u3);
		current_q.z = native_sqrt(current_u1)   * native_cos(PI_TIMES_2*current_u3);
829
830

		#if defined (DEBUG_GRAD_ROTATION_GENES)
831
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "current_q (w,x,y,z): ", current_q.w, current_q.x, current_q.y, current_q.z);
832
		#endif
833

Leonardo Solis's avatar
Leonardo Solis committed
834
		// This is where we want to be in quaternion space
835
		float4 target_q;
836
837
838
839

		// target_q = rotation.q_mult(q, current_q)
		// Derived from autodockdev/rotation.py/q_mult()
		// In our terms means q_mult(quat_{w|x|y|z}, current_q{w|x|y|z})
840
841
842
843
		target_q.w = quat_torque.w*current_q.w - quat_torque.x*current_q.x - quat_torque.y*current_q.y - quat_torque.z*current_q.z;// w
		target_q.x = quat_torque.w*current_q.x + quat_torque.x*current_q.w + quat_torque.y*current_q.z - quat_torque.z*current_q.y;// x
		target_q.y = quat_torque.w*current_q.y + quat_torque.y*current_q.w + quat_torque.z*current_q.x - quat_torque.x*current_q.z;// y
		target_q.z = quat_torque.w*current_q.z + quat_torque.z*current_q.w + quat_torque.x*current_q.y - quat_torque.y*current_q.x;// z
844
		#if defined (DEBUG_GRAD_ROTATION_GENES)
845
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "target_q (w,x,y,z): ", target_q.w, target_q.x, target_q.y, target_q.z);
846
		#endif
847

848
		// This is where we want to be in Shoemake space
849
850
851
852
853
		float target_u1, target_u2, target_u3;

		// target_u = quaternion_to_cube3(target_q)
		// Derived from autodockdev/motions.py/quaternion_to_cube3()
		// In our terms means quaternion_to_cube3(target_q{w|x|y|z})
854
855
856
		target_u1 = target_q.y*target_q.y + target_q.z*target_q.z;
		target_u2 = atan2(target_q.w, target_q.x);
		target_u3 = atan2(target_q.y, target_q.z);
857
		
858
859
860
861
862
863
		if (target_u2 < 0.0f)       { target_u2 += PI_TIMES_2; }
		if (target_u2 > PI_TIMES_2) { target_u2 -= PI_TIMES_2; }
		if (target_u3 < 0.0f) 	    { target_u3 += PI_TIMES_2; }
		if (target_u3 > PI_TIMES_2) { target_u3 -= PI_TIMES_2; }

		#if defined (DEBUG_GRAD_ROTATION_GENES)
864
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "target_u (1,2,3) - after mapping: ", target_u1, target_u2, target_u3);
865
		#endif
866
867
868
869
870
871
		
   		// The infinitesimal rotation will produce an infinitesimal displacement
    		// in shoemake space. This is to guarantee that the direction of
    		// the displacement in shoemake space is not distorted.
    		// The correct amount of displacement in shoemake space is obtained
		// by multiplying the infinitesimal displacement by shoemake_scaling:
872
873
		//float shoemake_scaling = native_divide(torque_length, INFINITESIMAL_RADIAN/*infinitesimal_radian*/);
		float shoemake_scaling = torque_length * INV_INFINITESIMAL_RADIAN;
874

Leonardo Solis's avatar
Leonardo Solis committed
875
		// Derivates in cube3
876
877
		// "current_u2" and "current_u3" are mapped into 
		// the same range [0, 2PI] of "target_u2" and "target_u3"
878
		float grad_u1, grad_u2, grad_u3;
879
		grad_u1 = shoemake_scaling * (target_u1 - current_u1);
880
881
		grad_u2 = shoemake_scaling * (target_u2 - current_u2 * PI_TIMES_2);
		grad_u3 = shoemake_scaling * (target_u3 - current_u3 * PI_TIMES_2);
882
883

		#if defined (DEBUG_GRAD_ROTATION_GENES)
884
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "grad_u (1,2,3) - before emp. scaling: ", grad_u1, grad_u2, grad_u3);
885
		#endif
886
			
Leonardo Solis's avatar
Leonardo Solis committed
887
		// Empirical scaling
888
		float temp_u1 = genotype[3];
889
			
890
		if ((0.0f < temp_u1) && (temp_u1 < 1.0f)){
891
			grad_u1 *= (native_divide(1.0f, temp_u1) + native_divide(1.0f, (1.0f-temp_u1)));
892
		}
893
894
		grad_u2 *= 4.0f * (1.0f-temp_u1);
		grad_u3 *= 4.0f * temp_u1;
895
896

		#if defined (DEBUG_GRAD_ROTATION_GENES)
897
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "grad_u (1,2,3) - after emp. scaling: ", grad_u1, grad_u2, grad_u3);
898
		#endif
899
		
900
901
902
903
		// Setting gradient rotation-related genotypes in cube3.
		// Scaling gradient for u2 and u3 genes as 
		// their corresponding gradients were calculated in the space where u2/3 are within [0, 2PI]
		// but OCLaDock u2/3 genes are within [0, 1]
904
		gradient_genotype[3] = grad_u1;
905
906
		gradient_genotype[4] = grad_u2 * PI_TIMES_2; 
		gradient_genotype[5] = grad_u3 * PI_TIMES_2;
907
908
	}

Leonardo Solis's avatar
Leonardo Solis committed
909
910
911
	// ------------------------------------------
	// Obtaining torsion-related gradients
	// ------------------------------------------
912
913
914
915
916
917
	if (get_local_id(0) == 2) {

		for (uint rotbond_id = 0;
			  rotbond_id < dockpars_num_of_genes-6;
			  rotbond_id ++) {

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
			// Querying ids of atoms belonging to the rotatable bond in question
			int atom1_id = rotbonds_const[2*rotbond_id];
			int atom2_id = rotbonds_const[2*rotbond_id+1];

			float3 atomRef_coords;
			atomRef_coords.x = calc_coords_x[atom1_id];
			atomRef_coords.y = calc_coords_y[atom1_id];
			atomRef_coords.z = calc_coords_z[atom1_id];

			#if defined (DEBUG_GRAD_TORSION_GENES)
			printf("%-15s %-10u\n", "rotbond_id: ", rotbond_id);
			printf("%-15s %-10i\n", "atom1_id: ", atom1_id);
			printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom1_coords: ", calc_coords_x[atom1_id], calc_coords_y[atom1_id], calc_coords_z[atom1_id]);
			printf("%-15s %-10i\n", "atom2_id: ", atom2_id);
			printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom2_coords: ", calc_coords_x[atom2_id], calc_coords_y[atom2_id], calc_coords_z[atom2_id]);
			printf("\n");
			#endif		

936
			float3 rotation_unitvec;
937
			/*
938
939
940
			rotation_unitvec.x = rotbonds_unit_vectors_const[3*rotbond_id];
			rotation_unitvec.y = rotbonds_unit_vectors_const[3*rotbond_id+1];
			rotation_unitvec.z = rotbonds_unit_vectors_const[3*rotbond_id+2];
941
942
943
944
945
946
			*/
			rotation_unitvec.x = calc_coords_x[atom2_id] - calc_coords_x[atom1_id];
			rotation_unitvec.y = calc_coords_y[atom2_id] - calc_coords_y[atom1_id];
			rotation_unitvec.z = calc_coords_z[atom2_id] - calc_coords_z[atom1_id];
			rotation_unitvec = fast_normalize(rotation_unitvec);

947
			// Torque of torsions
948
949
950
951
952
953
954
955
956
957
			float3 torque_tor;
			torque_tor.x = 0.0f;
			torque_tor.y = 0.0f;
			torque_tor.z = 0.0f;

			// Iterating over each ligand atom that rotates 
			// if the bond in question rotates
			for (uint rotable_atom_cnt = 0;
				  rotable_atom_cnt<num_rotating_atoms_per_rotbond_const[rotbond_id];
				  rotable_atom_cnt++) {
958

959
				uint lig_atom_id = rotbonds_atoms_const[MAX_NUM_OF_ATOMS*rotbond_id + rotable_atom_cnt];
960

Leonardo Solis's avatar
Leonardo Solis committed
961
				// Calculating torque on point "A" 
962
				// (could be any other point "B" along the rotation axis)
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
				float3 atom_coords;
				atom_coords.x = calc_coords_x[lig_atom_id];
				atom_coords.y = calc_coords_y[lig_atom_id];
				atom_coords.z = calc_coords_z[lig_atom_id];

				// Temporal variable to calculate translation differences.
				// They are converted back to Angstroms here
				float3 r;
				r.x = (atom_coords.x - atomRef_coords.x) * dockpars_grid_spacing;
				r.y = (atom_coords.y - atomRef_coords.y) * dockpars_grid_spacing;
				r.z = (atom_coords.z - atomRef_coords.z) * dockpars_grid_spacing;

				float3 atom_force;
				atom_force.x = gradient_x[lig_atom_id]; 
				atom_force.y = gradient_y[lig_atom_id];
				atom_force.z = gradient_z[lig_atom_id];

				torque_tor += cross(r, atom_force);

				#if defined (DEBUG_GRAD_TORSION_GENES)
				printf("\n");
Leonardo Solis's avatar
Leonardo Solis committed
984
				printf("%-15s %-10u\n", "rotable_atom_cnt: ", rotable_atom_cnt);
985
				printf("%-15s %-10u\n", "atom_id: ", lig_atom_id);
Leonardo Solis's avatar
Leonardo Solis committed
986
987
988
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom_coords: ", atom_coords.x, atom_coords.y, atom_coords.z);
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "r: ", r.x, r.y, r.z);
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "unitvec: ", rotation_unitvec.x, rotation_unitvec.y, rotation_unitvec.z);
989
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom_force: ", atom_force.x, atom_force.y, atom_force.z);
Leonardo Solis's avatar
Leonardo Solis committed
990
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "torque_tor: ", torque_tor.x, torque_tor.y, torque_tor.z);
991
				#endif
992
993

			}
994
995
996
			#if defined (DEBUG_GRAD_TORSION_GENES)
			printf("\n");
			#endif
997

998
			// Projecting torque on rotation axis
999
1000
			float torque_on_axis = dot(rotation_unitvec, torque_tor);