performdocking.cpp 41.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
#ifndef _WIN32
#define STRINGIZE2(s) #s
#define STRINGIZE(s)	STRINGIZE2(s)
#define KRNL_FILE STRINGIZE(KRNL_SOURCE)
#define KRNL_FOLDER STRINGIZE(KRNL_DIRECTORY)
#define KRNL_COMMON STRINGIZE(KCMN_DIRECTORY)
#define KRNL1 STRINGIZE(K1)
#define KRNL2 STRINGIZE(K2)
#define KRNL3 STRINGIZE(K3)
#define KRNL4 STRINGIZE(K4)

#else
#define KRNL_FILE KRNL_SOURCE
#define KRNL_FOLDER KRNL_DIRECTORY
#define KRNL_COMMON KCMN_DIRECTORY
#define KRNL1 K1
#define KRNL2 K2
#define KRNL3 K3
#define KRNL4 K4
#endif

#define INC " -I " KRNL_FOLDER " -I " KRNL_COMMON

#if defined (N16WI)
	#define KNWI " -DN16WI "
#elif defined (N32WI)
	#define KNWI " -DN32WI "
#elif defined (N64WI)
	#define KNWI " -DN64WI "
#elif defined (N128WI)
	#define KNWI " -DN128WI "
#elif defined (N256WI)
		#define KNWI " -DN256WI "
#else
	#define KNWI	" -DN64WI "
#endif

#if defined (REPRO)
	#define REP " -DREPRO "
#else
	#define REP " "
#endif

#define KGDB_AMD 		" -g -O0 "
#define KGDB_INTEL	" -g -s " KRNL_FILE

#if defined (DOCK_DEBUG)
	#if defined (CPU_DEVICE)
		#define KGDB KGDB_INTEL
	#elif defined (GPU_DEVICE)
		#define KGDB KGDB_AMD
	#endif
#else
	#define KGDB " "
#endif

#define OPT_PROG INC KNWI REP KGDB

#include "performdocking.h"
#include "stringify.h"

int docking_with_gpu(const Gridinfo*   mygrid,
	             	 /*const*/ float*      cpu_floatgrids,
                           Dockpars*   mypars,
		     						 const Liganddata* myligand_init,
		     			 	     const int*        argc,
		           						 char**      argv,
		           						 clock_t     clock_start_program)
/* The function performs the docking algorithm and generates the corresponding result files.
parameter mygrid:
		describes the grid
		filled with get_gridinfo()
parameter cpu_floatgrids:
		points to the memory region containing the grids
		filled with get_gridvalues_f()
parameter mypars:
		describes the docking parameters
		filled with get_commandpars()
parameter myligand_init:
		describes the ligands
		filled with get_liganddata()
parameters argc and argv:
		are the corresponding command line arguments parameter clock_start_program:
		contains the state of the clock tick counter at the beginning of the program
filled with clock() */
{
// =======================================================================
// OpenCL Host Setup
// =======================================================================
	cl_platform_id* platform_id;
	cl_device_id* device_id;
	cl_context context;
	cl_command_queue command_queue;

#ifdef _WIN32
	const char *filename = KRNL_FILE;
	printf("\n%-40s %-40s\n", "Kernel source file: ", filename);  fflush(stdout);
#else
	printf("\n%-40s %-40s\n", "Kernel source used for development: ", "./device/calcenergy.cl");  fflush(stdout);
	printf(  "%-40s %-40s\n", "Kernel string used for building: ",    "./host/inc/stringify.h");  fflush(stdout);
#endif

	const char* options_program = OPT_PROG;
	printf("%-40s %-40s\n", "Kernel compilation flags: ", options_program); fflush(stdout);

	cl_kernel kernel1; const char *name_k1 = KRNL1;
	size_t kernel1_gxsize, kernel1_lxsize;

	cl_kernel kernel2; const char *name_k2 = KRNL2;
	size_t kernel2_gxsize, kernel2_lxsize;

	cl_kernel kernel3; const char *name_k3 = KRNL3;
	size_t kernel3_gxsize, kernel3_lxsize;

	cl_kernel kernel4; const char *name_k4 = KRNL4;
	size_t kernel4_gxsize, kernel4_lxsize;

	cl_uint platformCount;
	cl_uint deviceCount;

	// Times
	cl_ulong time_start_kernel;
	cl_ulong time_end_kernel;

	// Get all available platforms
	if (getPlatforms(&platform_id,&platformCount) != 0) return 1;

	// Get all devices of first platform
	if (getDevices(platform_id[0],platformCount,&device_id,&deviceCount) != 0) return 1;

	// Create context from first platform
	if (createContext(platform_id[0],1,device_id,&context) != 0) return 1;

	// Create command queue for first device
	if (createCommandQueue(context,device_id[0],&command_queue) != 0) return 1;

	// Create program and kernel from source
#ifdef _WIN32
	if (ImportSource(filename, name_k1, device_id, context, options_program, &kernel1) != 0) return 1;
	if (ImportSource(filename, name_k2, device_id, context, options_program, &kernel2) != 0) return 1;
	if (ImportSource(filename, name_k3, device_id, context, options_program, &kernel3) != 0) return 1;
	if (ImportSource(filename, name_k4, device_id, context, options_program, &kernel4) != 0) return 1;
#else
	if (ImportSource(calcenergy_ocl, name_k1, device_id, context, options_program, &kernel1) != 0) return 1;
	if (ImportSource(calcenergy_ocl, name_k2, device_id, context, options_program, &kernel2) != 0) return 1;
	if (ImportSource(calcenergy_ocl, name_k3, device_id, context, options_program, &kernel3) != 0) return 1;
	if (ImportSource(calcenergy_ocl, name_k4, device_id, context, options_program, &kernel4) != 0) return 1;
#endif

// End of OpenCL Host Setup
// =======================================================================

	Liganddata myligand_reference;

	float* cpu_init_populations;
	float* cpu_final_populations;
	float* cpu_energies;
	Ligandresult* cpu_result_ligands;
	unsigned int* cpu_prng_seeds;
	int* cpu_evals_of_runs;
	float* cpu_ref_ori_angles;

	Dockparameters dockpars;
	size_t size_floatgrids;
	size_t size_populations;
	size_t size_energies;
	size_t size_prng_seeds;
	size_t size_evals_of_runs;

	int threadsPerBlock;
	int blocksPerGridForEachEntity;
	int blocksPerGridForEachRun;
	int blocksPerGridForEachLSEntity;

	unsigned long run_cnt;	/* int run_cnt; */
	int generation_cnt;
	int i;
	double progress;

	int curr_progress_cnt;
	int new_progress_cnt;

	clock_t clock_start_docking;
	clock_t	clock_stop_docking;
	clock_t clock_stop_program_before_clustering;

	//setting number of blocks and threads
	threadsPerBlock = NUM_OF_THREADS_PER_BLOCK;
	blocksPerGridForEachEntity = mypars->pop_size * mypars->num_of_runs;
	blocksPerGridForEachRun = mypars->num_of_runs;

	//allocating CPU memory for initial populations
	size_populations = mypars->num_of_runs * mypars->pop_size * GENOTYPE_LENGTH_IN_GLOBMEM*sizeof(float);
	cpu_init_populations = (float*) malloc(size_populations);
	memset(cpu_init_populations, 0, size_populations);

	//allocating CPU memory for results
	size_energies = mypars->pop_size * mypars->num_of_runs * sizeof(float);
	cpu_energies = (float*) malloc(size_energies);
	cpu_result_ligands = (Ligandresult*) malloc(sizeof(Ligandresult)*(mypars->num_of_runs));
	cpu_final_populations = cpu_init_populations;

	//allocating memory in CPU for reference orientation angles
	cpu_ref_ori_angles = (float*) malloc(mypars->num_of_runs*3*sizeof(float));

	//generating initial populations and random orientation angles of reference ligand
	//(ligand will be moved to origo and scaled as well)
	myligand_reference = *myligand_init;
	gen_initpop_and_reflig(mypars, cpu_init_populations, cpu_ref_ori_angles, &myligand_reference, mygrid);

	//allocating memory in CPU for pseudorandom number generator seeds and
	//generating them (seed for each thread during GA)
	size_prng_seeds = blocksPerGridForEachEntity * threadsPerBlock * sizeof(unsigned int);
	cpu_prng_seeds = (unsigned int*) malloc(size_prng_seeds);

	genseed(time(NULL));	//initializing seed generator

	for (i=0; i<blocksPerGridForEachEntity*threadsPerBlock; i++)
#if defined (REPRO)
		cpu_prng_seeds[i] = 1u;
#else
		cpu_prng_seeds[i] = genseed(0u);
#endif

	//allocating memory in CPU for evaluation counters
	size_evals_of_runs = mypars->num_of_runs*sizeof(int);
	cpu_evals_of_runs = (int*) malloc(size_evals_of_runs);
	memset(cpu_evals_of_runs, 0, size_evals_of_runs);

	//preparing the constant data fields for the GPU
	// ----------------------------------------------------------------------
	// The original function does CUDA calls initializing const Kernel data.
	// We create a struct to hold those constants
	// and return them <here> (<here> = where prepare_const_fields_for_gpu() is called),
	// so we can send them to Kernels from <here>, instead of from calcenergy.cpp as originally.
	// ----------------------------------------------------------------------
	// Constant struct
	kernelconstant KerConst;

	if (prepare_const_fields_for_gpu(&myligand_reference, mypars, cpu_ref_ori_angles, &KerConst) == 1)
		return 1;

	// Constant data holding struct data
	// Created because structs containing array
	// are not supported as OpenCL kernel args
  cl_mem mem_atom_charges_const;
  cl_mem mem_atom_types_const;
  cl_mem mem_intraE_contributors_const;
  cl_mem mem_VWpars_AC_const;
  cl_mem mem_VWpars_BD_const;
  cl_mem mem_dspars_S_const;
  cl_mem mem_dspars_V_const;
  cl_mem mem_rotlist_const;
  cl_mem mem_ref_coords_x_const;
  cl_mem mem_ref_coords_y_const;
  cl_mem mem_ref_coords_z_const;
  cl_mem mem_rotbonds_moving_vectors_const;
  cl_mem mem_rotbonds_unit_vectors_const;
  cl_mem mem_ref_orientation_quats_const;

	// These constants are allocated in global memory since
	// there is a limited number of constants that can be passed
	// as arguments to kernel
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATOMS*sizeof(float),                         &mem_atom_charges_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATOMS*sizeof(char),                          &mem_atom_types_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,3*MAX_INTRAE_CONTRIBUTORS*sizeof(char),                 &mem_intraE_contributors_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATYPES*MAX_NUM_OF_ATYPES*sizeof(float),      &mem_VWpars_AC_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATYPES*MAX_NUM_OF_ATYPES*sizeof(float),      &mem_VWpars_BD_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATYPES*sizeof(float),                        &mem_dspars_S_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATYPES*sizeof(float),                        &mem_dspars_V_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ROTATIONS*sizeof(int),                       &mem_rotlist_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATOMS*sizeof(float),                         &mem_ref_coords_x_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATOMS*sizeof(float),                         &mem_ref_coords_y_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,MAX_NUM_OF_ATOMS*sizeof(float),                         &mem_ref_coords_z_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,3*MAX_NUM_OF_ROTBONDS*sizeof(float),                    &mem_rotbonds_moving_vectors_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,3*MAX_NUM_OF_ROTBONDS*sizeof(float),                    &mem_rotbonds_unit_vectors_const);
  mallocBufferObject(context,CL_MEM_READ_ONLY,4*MAX_NUM_OF_RUNS*sizeof(float),                        &mem_ref_orientation_quats_const);

  memcopyBufferObjectToDevice(command_queue,mem_atom_charges_const,         	&KerConst.atom_charges_const,           MAX_NUM_OF_ATOMS*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_atom_types_const,           	&KerConst.atom_types_const,             MAX_NUM_OF_ATOMS*sizeof(char));
  memcopyBufferObjectToDevice(command_queue,mem_intraE_contributors_const,  	&KerConst.intraE_contributors_const,    3*MAX_INTRAE_CONTRIBUTORS*sizeof(char));
  memcopyBufferObjectToDevice(command_queue,mem_VWpars_AC_const,            	&KerConst.VWpars_AC_const,              MAX_NUM_OF_ATYPES*MAX_NUM_OF_ATYPES*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_VWpars_BD_const,            	&KerConst.VWpars_BD_const,              MAX_NUM_OF_ATYPES*MAX_NUM_OF_ATYPES*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_dspars_S_const,             	&KerConst.dspars_S_const,               MAX_NUM_OF_ATYPES*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_dspars_V_const,             	&KerConst.dspars_V_const,               MAX_NUM_OF_ATYPES*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_rotlist_const,              	&KerConst.rotlist_const,                MAX_NUM_OF_ROTATIONS*sizeof(int));
  memcopyBufferObjectToDevice(command_queue,mem_ref_coords_x_const,         	&KerConst.ref_coords_x_const,           MAX_NUM_OF_ATOMS*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_ref_coords_y_const,         	&KerConst.ref_coords_y_const,           MAX_NUM_OF_ATOMS*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_ref_coords_z_const,         	&KerConst.ref_coords_z_const,           MAX_NUM_OF_ATOMS*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_rotbonds_moving_vectors_const,&KerConst.rotbonds_moving_vectors_const,3*MAX_NUM_OF_ROTBONDS*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_rotbonds_unit_vectors_const,  &KerConst.rotbonds_unit_vectors_const,  3*MAX_NUM_OF_ROTBONDS*sizeof(float));
  memcopyBufferObjectToDevice(command_queue,mem_ref_orientation_quats_const,  &KerConst.ref_orientation_quats_const,  4*MAX_NUM_OF_RUNS*sizeof(float));
	// ----------------------------------------------------------------------

 	//allocating GPU memory for populations, floatgirds,
	//energies, evaluation counters and random number generator states
	size_floatgrids = (sizeof(float)) * (mygrid->num_of_atypes+2) * (mygrid->size_xyz[0]) * (mygrid->size_xyz[1]) * (mygrid->size_xyz[2]);

	cl_mem mem_dockpars_fgrids;
	cl_mem mem_dockpars_conformations_current;
	cl_mem mem_dockpars_energies_current;
	cl_mem mem_dockpars_conformations_next;
	cl_mem mem_dockpars_energies_next;
	cl_mem mem_dockpars_evals_of_new_entities;
	cl_mem mem_gpu_evals_of_runs;
	cl_mem mem_dockpars_prng_states;

	mallocBufferObject(context,CL_MEM_READ_ONLY,size_floatgrids,         				&mem_dockpars_fgrids);
	mallocBufferObject(context,CL_MEM_READ_ONLY,size_populations,        				&mem_dockpars_conformations_current);
	mallocBufferObject(context,CL_MEM_READ_WRITE,size_energies,           			&mem_dockpars_energies_current);
	mallocBufferObject(context,CL_MEM_READ_WRITE,size_populations,        			&mem_dockpars_conformations_next);
	mallocBufferObject(context,CL_MEM_READ_WRITE,size_energies,    	      			&mem_dockpars_energies_next);
	mallocBufferObject(context,CL_MEM_READ_WRITE,mypars->pop_size*mypars->num_of_runs*sizeof(int), 	&mem_dockpars_evals_of_new_entities);

	// -------- Replacing with memory maps! ------------
#if defined (MAPPED_COPY)
	mallocBufferObject(context,CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR ,size_evals_of_runs,	  			&mem_gpu_evals_of_runs);
#else
	mallocBufferObject(context,CL_MEM_READ_WRITE,size_evals_of_runs,	  			&mem_gpu_evals_of_runs);
#endif
	// -------- Replacing with memory maps! ------------

	mallocBufferObject(context,CL_MEM_READ_WRITE,size_prng_seeds,  	      				&mem_dockpars_prng_states);

	memcopyBufferObjectToDevice(command_queue,mem_dockpars_fgrids,                /*(void *)*/ cpu_floatgrids,  size_floatgrids);
 	memcopyBufferObjectToDevice(command_queue,mem_dockpars_conformations_current, cpu_init_populations, 				size_populations);
	memcopyBufferObjectToDevice(command_queue,mem_gpu_evals_of_runs, 							cpu_evals_of_runs, 	 					size_evals_of_runs);
	memcopyBufferObjectToDevice(command_queue,mem_dockpars_prng_states,     			cpu_prng_seeds,      					size_prng_seeds);

	//preparing parameter struct
	dockpars.num_of_atoms  = ((char)  myligand_reference.num_of_atoms);
	dockpars.num_of_atypes = ((char)  myligand_reference.num_of_atypes);
	dockpars.num_of_intraE_contributors = ((int) myligand_reference.num_of_intraE_contributors);
	dockpars.gridsize_x    = ((char)  mygrid->size_xyz[0]);
	dockpars.gridsize_y    = ((char)  mygrid->size_xyz[1]);
	dockpars.gridsize_z    = ((char)  mygrid->size_xyz[2]);
	dockpars.grid_spacing  = ((float) mygrid->spacing);
	dockpars.rotbondlist_length = ((int) NUM_OF_THREADS_PER_BLOCK*(myligand_reference.num_of_rotcyc));
	dockpars.coeff_elec    = ((float) mypars->coeffs.scaled_AD4_coeff_elec);
	dockpars.coeff_desolv  = ((float) mypars->coeffs.AD4_coeff_desolv);
	dockpars.pop_size      = mypars->pop_size;
	dockpars.num_of_genes  = myligand_reference.num_of_rotbonds + 6;
	dockpars.tournament_rate = mypars->tournament_rate;
	dockpars.crossover_rate  = mypars->crossover_rate;
	dockpars.mutation_rate   = mypars->mutation_rate;
	dockpars.abs_max_dang    = mypars->abs_max_dang;
	dockpars.abs_max_dmov    = mypars->abs_max_dmov;
	dockpars.lsearch_rate    = mypars->lsearch_rate;
	dockpars.num_of_lsentities = (unsigned int) (mypars->lsearch_rate/100.0*mypars->pop_size + 0.5);
	dockpars.rho_lower_bound   = mypars->rho_lower_bound;
	dockpars.base_dmov_mul_sqrt3 = mypars->base_dmov_mul_sqrt3;
	dockpars.base_dang_mul_sqrt3 = mypars->base_dang_mul_sqrt3;
	dockpars.cons_limit        = (unsigned int) mypars->cons_limit;
	dockpars.max_num_of_iters  = (unsigned int) mypars->max_num_of_iters;
	dockpars.qasp = mypars->qasp;

	blocksPerGridForEachLSEntity = dockpars.num_of_lsentities*mypars->num_of_runs;

	clock_start_docking = clock();

	//print progress bar
#ifndef DOCK_DEBUG
	printf("\nExecuting docking runs:\n");
	printf("        20%%        40%%       60%%       80%%       100%%\n");
	printf("---------+---------+---------+---------+---------+\n");
#else
	printf("\n");
#endif
	curr_progress_cnt = 0;

#ifdef DOCK_DEBUG
	// Main while-loop iterarion counter
	unsigned int ite_cnt = 0;
#endif

// Kernel1
  setKernelArg(kernel1,0, sizeof(dockpars.num_of_atoms),                  &dockpars.num_of_atoms);
  setKernelArg(kernel1,1, sizeof(dockpars.num_of_atypes),                 &dockpars.num_of_atypes);
  setKernelArg(kernel1,2, sizeof(dockpars.num_of_intraE_contributors),    &dockpars.num_of_intraE_contributors);
  setKernelArg(kernel1,3, sizeof(dockpars.gridsize_x),                    &dockpars.gridsize_x);
  setKernelArg(kernel1,4, sizeof(dockpars.gridsize_y),                    &dockpars.gridsize_y);
  setKernelArg(kernel1,5, sizeof(dockpars.gridsize_z),                    &dockpars.gridsize_z);
  setKernelArg(kernel1,6, sizeof(dockpars.grid_spacing),                  &dockpars.grid_spacing);
  setKernelArg(kernel1,7, sizeof(mem_dockpars_fgrids),                    &mem_dockpars_fgrids);
  setKernelArg(kernel1,8, sizeof(dockpars.rotbondlist_length),            &dockpars.rotbondlist_length);
  setKernelArg(kernel1,9, sizeof(dockpars.coeff_elec),                    &dockpars.coeff_elec);
  setKernelArg(kernel1,10,sizeof(dockpars.coeff_desolv),                  &dockpars.coeff_desolv);
  setKernelArg(kernel1,11,sizeof(mem_dockpars_conformations_current),     &mem_dockpars_conformations_current);
  setKernelArg(kernel1,12,sizeof(mem_dockpars_energies_current),          &mem_dockpars_energies_current);
  setKernelArg(kernel1,13,sizeof(mem_dockpars_evals_of_new_entities),     &mem_dockpars_evals_of_new_entities);
  setKernelArg(kernel1,14,sizeof(dockpars.pop_size),                      &dockpars.pop_size);
  setKernelArg(kernel1,15,sizeof(dockpars.qasp),                          &dockpars.qasp);
  setKernelArg(kernel1,16,sizeof(mem_atom_charges_const),                 &mem_atom_charges_const);
  setKernelArg(kernel1,17,sizeof(mem_atom_types_const),                   &mem_atom_types_const);
  setKernelArg(kernel1,18,sizeof(mem_intraE_contributors_const),          &mem_intraE_contributors_const);
  setKernelArg(kernel1,19,sizeof(mem_VWpars_AC_const),                    &mem_VWpars_AC_const);
  setKernelArg(kernel1,20,sizeof(mem_VWpars_BD_const),                    &mem_VWpars_BD_const);
  setKernelArg(kernel1,21,sizeof(mem_dspars_S_const),                     &mem_dspars_S_const);
  setKernelArg(kernel1,22,sizeof(mem_dspars_V_const),                     &mem_dspars_V_const);
  setKernelArg(kernel1,23,sizeof(mem_rotlist_const),                      &mem_rotlist_const);
  setKernelArg(kernel1,24,sizeof(mem_ref_coords_x_const),                 &mem_ref_coords_x_const);
  setKernelArg(kernel1,25,sizeof(mem_ref_coords_y_const),                 &mem_ref_coords_y_const);
  setKernelArg(kernel1,26,sizeof(mem_ref_coords_z_const),                 &mem_ref_coords_z_const);
  setKernelArg(kernel1,27,sizeof(mem_rotbonds_moving_vectors_const),      &mem_rotbonds_moving_vectors_const);
  setKernelArg(kernel1,28,sizeof(mem_rotbonds_unit_vectors_const),        &mem_rotbonds_unit_vectors_const);
  setKernelArg(kernel1,29,sizeof(mem_ref_orientation_quats_const),        &mem_ref_orientation_quats_const);
  kernel1_gxsize = blocksPerGridForEachEntity * threadsPerBlock;
  kernel1_lxsize = threadsPerBlock;
#ifdef DOCK_DEBUG
	printf("%-25s %10s %8u %10s %4u\n", "Kernel1: ", "gSize: ", kernel1_gxsize, "lSize: ", kernel1_lxsize); fflush(stdout);
#endif
// End of Kernel1

// Kernel2
//  setKernelArg(kernel2,0,sizeof(mypars->pop_size),       		&mypars->pop_size);
  setKernelArg(kernel2,0,sizeof(dockpars.pop_size),       		&dockpars.pop_size);
  setKernelArg(kernel2,1,sizeof(mem_dockpars_evals_of_new_entities),      &mem_dockpars_evals_of_new_entities);
  setKernelArg(kernel2,2,sizeof(mem_gpu_evals_of_runs),                   &mem_gpu_evals_of_runs);
	kernel2_gxsize = blocksPerGridForEachRun * threadsPerBlock;
  kernel2_lxsize = threadsPerBlock;
#ifdef DOCK_DEBUG
	printf("%-25s %10s %8u %10s %4u\n", "Kernel2: ", "gSize: ", kernel2_gxsize, "lSize: ",  kernel2_lxsize); fflush(stdout);
#endif
// End of Kernel2

// Kernel4
  setKernelArg(kernel4,0, sizeof(dockpars.num_of_atoms),                 	&dockpars.num_of_atoms);
  setKernelArg(kernel4,1, sizeof(dockpars.num_of_atypes),                 &dockpars.num_of_atypes);
  setKernelArg(kernel4,2, sizeof(dockpars.num_of_intraE_contributors),    &dockpars.num_of_intraE_contributors);
  setKernelArg(kernel4,3, sizeof(dockpars.gridsize_x),                   	&dockpars.gridsize_x);
  setKernelArg(kernel4,4, sizeof(dockpars.gridsize_y),                    &dockpars.gridsize_y);
  setKernelArg(kernel4,5, sizeof(dockpars.gridsize_z),                    &dockpars.gridsize_z);
  setKernelArg(kernel4,6, sizeof(dockpars.grid_spacing),                  &dockpars.grid_spacing);
  setKernelArg(kernel4,7, sizeof(mem_dockpars_fgrids),                    &mem_dockpars_fgrids);
  setKernelArg(kernel4,8, sizeof(dockpars.rotbondlist_length),            &dockpars.rotbondlist_length);
  setKernelArg(kernel4,9, sizeof(dockpars.coeff_elec),                    &dockpars.coeff_elec);
  setKernelArg(kernel4,10,sizeof(dockpars.coeff_desolv),                  &dockpars.coeff_desolv);
  setKernelArg(kernel4,11,sizeof(mem_dockpars_conformations_current),    	&mem_dockpars_conformations_current);
  setKernelArg(kernel4,12,sizeof(mem_dockpars_energies_current),          &mem_dockpars_energies_current);
  setKernelArg(kernel4,13,sizeof(mem_dockpars_conformations_next),        &mem_dockpars_conformations_next);
  setKernelArg(kernel4,14,sizeof(mem_dockpars_energies_next),             &mem_dockpars_energies_next);
  setKernelArg(kernel4,15,sizeof(mem_dockpars_evals_of_new_entities),     &mem_dockpars_evals_of_new_entities);
  setKernelArg(kernel4,16,sizeof(mem_dockpars_prng_states),               &mem_dockpars_prng_states);
  setKernelArg(kernel4,17,sizeof(dockpars.pop_size),                     	&dockpars.pop_size);
  setKernelArg(kernel4,18,sizeof(dockpars.num_of_genes),                 	&dockpars.num_of_genes);
  setKernelArg(kernel4,19,sizeof(dockpars.tournament_rate),               &dockpars.tournament_rate);
  setKernelArg(kernel4,20,sizeof(dockpars.crossover_rate),                &dockpars.crossover_rate);
  setKernelArg(kernel4,21,sizeof(dockpars.mutation_rate),                 &dockpars.mutation_rate);
  setKernelArg(kernel4,22,sizeof(dockpars.abs_max_dmov),                  &dockpars.abs_max_dmov);
  setKernelArg(kernel4,23,sizeof(dockpars.abs_max_dang),                  &dockpars.abs_max_dang);
  setKernelArg(kernel4,24,sizeof(dockpars.qasp),                         	&dockpars.qasp);
  setKernelArg(kernel4,25,sizeof(mem_atom_charges_const),                 &mem_atom_charges_const);
  setKernelArg(kernel4,26,sizeof(mem_atom_types_const),                  	&mem_atom_types_const);
  setKernelArg(kernel4,27,sizeof(mem_intraE_contributors_const),          &mem_intraE_contributors_const);
  setKernelArg(kernel4,28,sizeof(mem_VWpars_AC_const),                    &mem_VWpars_AC_const);
  setKernelArg(kernel4,29,sizeof(mem_VWpars_BD_const),                    &mem_VWpars_BD_const);
  setKernelArg(kernel4,30,sizeof(mem_dspars_S_const),                     &mem_dspars_S_const);
  setKernelArg(kernel4,31,sizeof(mem_dspars_V_const),                    	&mem_dspars_V_const);
  setKernelArg(kernel4,32,sizeof(mem_rotlist_const),                      &mem_rotlist_const);
  setKernelArg(kernel4,33,sizeof(mem_ref_coords_x_const),                 &mem_ref_coords_x_const);
  setKernelArg(kernel4,34,sizeof(mem_ref_coords_y_const),                 &mem_ref_coords_y_const);
  setKernelArg(kernel4,35,sizeof(mem_ref_coords_z_const),                 &mem_ref_coords_z_const);
  setKernelArg(kernel4,36,sizeof(mem_rotbonds_moving_vectors_const),     	&mem_rotbonds_moving_vectors_const);
  setKernelArg(kernel4,37,sizeof(mem_rotbonds_unit_vectors_const),        &mem_rotbonds_unit_vectors_const);
  setKernelArg(kernel4,38,sizeof(mem_ref_orientation_quats_const),       	&mem_ref_orientation_quats_const);

	kernel4_gxsize = blocksPerGridForEachEntity * threadsPerBlock;
  kernel4_lxsize = threadsPerBlock;
#ifdef DOCK_DEBUG
	printf("%-25s %10s %8u %10s %4u\n", "K_GENETIC_GENERATION: ", "gSize: ",  kernel4_gxsize, "lSize: ", kernel4_lxsize); fflush(stdout);
#endif
// End of Kernel4

// Kernel3
  setKernelArg(kernel3,0,sizeof(dockpars.num_of_atoms),                   &dockpars.num_of_atoms);
  setKernelArg(kernel3,1,sizeof(dockpars.num_of_atypes),                  &dockpars.num_of_atypes);
  setKernelArg(kernel3,2,sizeof(dockpars.num_of_intraE_contributors),     &dockpars.num_of_intraE_contributors);
  setKernelArg(kernel3,3,sizeof(dockpars.gridsize_x),                     &dockpars.gridsize_x);
  setKernelArg(kernel3,4,sizeof(dockpars.gridsize_y),                     &dockpars.gridsize_y);
  setKernelArg(kernel3,5,sizeof(dockpars.gridsize_z),                     &dockpars.gridsize_z);
  setKernelArg(kernel3,6,sizeof(dockpars.grid_spacing),                   &dockpars.grid_spacing);
  setKernelArg(kernel3,7,sizeof(mem_dockpars_fgrids),                     &mem_dockpars_fgrids);
  setKernelArg(kernel3,8,sizeof(dockpars.rotbondlist_length),             &dockpars.rotbondlist_length);
  setKernelArg(kernel3,9,sizeof(dockpars.coeff_elec),                     &dockpars.coeff_elec);
  setKernelArg(kernel3,10,sizeof(dockpars.coeff_desolv),                  &dockpars.coeff_desolv);
  setKernelArg(kernel3,11,sizeof(mem_dockpars_conformations_next),        &mem_dockpars_conformations_next);
  setKernelArg(kernel3,12,sizeof(mem_dockpars_energies_next),             &mem_dockpars_energies_next);
  setKernelArg(kernel3,13,sizeof(mem_dockpars_evals_of_new_entities),     &mem_dockpars_evals_of_new_entities);
  setKernelArg(kernel3,14,sizeof(mem_dockpars_prng_states),               &mem_dockpars_prng_states);
  setKernelArg(kernel3,15,sizeof(dockpars.pop_size),                      &dockpars.pop_size);
  setKernelArg(kernel3,16,sizeof(dockpars.num_of_genes),                  &dockpars.num_of_genes);
  setKernelArg(kernel3,17,sizeof(dockpars.lsearch_rate),                  &dockpars.lsearch_rate);
  setKernelArg(kernel3,18,sizeof(dockpars.num_of_lsentities),             &dockpars.num_of_lsentities);
  setKernelArg(kernel3,19,sizeof(dockpars.rho_lower_bound),               &dockpars.rho_lower_bound);
  setKernelArg(kernel3,20,sizeof(dockpars.base_dmov_mul_sqrt3),           &dockpars.base_dmov_mul_sqrt3);
  setKernelArg(kernel3,21,sizeof(dockpars.base_dang_mul_sqrt3),           &dockpars.base_dang_mul_sqrt3);
  setKernelArg(kernel3,22,sizeof(dockpars.cons_limit),                    &dockpars.cons_limit);
  setKernelArg(kernel3,23,sizeof(dockpars.max_num_of_iters),              &dockpars.max_num_of_iters);
  setKernelArg(kernel3,24,sizeof(dockpars.qasp),                          &dockpars.qasp);
  setKernelArg(kernel3,25,sizeof(mem_atom_charges_const),                 &mem_atom_charges_const);
  setKernelArg(kernel3,26,sizeof(mem_atom_types_const),                   &mem_atom_types_const);
  setKernelArg(kernel3,27,sizeof(mem_intraE_contributors_const),          &mem_intraE_contributors_const);
  setKernelArg(kernel3,28,sizeof(mem_VWpars_AC_const),                    &mem_VWpars_AC_const);
  setKernelArg(kernel3,29,sizeof(mem_VWpars_BD_const),                    &mem_VWpars_BD_const);
  setKernelArg(kernel3,30,sizeof(mem_dspars_S_const),                     &mem_dspars_S_const);
  setKernelArg(kernel3,31,sizeof(mem_dspars_V_const),                     &mem_dspars_V_const);
  setKernelArg(kernel3,32,sizeof(mem_rotlist_const),                      &mem_rotlist_const);
  setKernelArg(kernel3,33,sizeof(mem_ref_coords_x_const),                 &mem_ref_coords_x_const);
  setKernelArg(kernel3,34,sizeof(mem_ref_coords_y_const),                 &mem_ref_coords_y_const);
  setKernelArg(kernel3,35,sizeof(mem_ref_coords_z_const),                 &mem_ref_coords_z_const);
  setKernelArg(kernel3,36,sizeof(mem_rotbonds_moving_vectors_const),      &mem_rotbonds_moving_vectors_const);
  setKernelArg(kernel3,37,sizeof(mem_rotbonds_unit_vectors_const),        &mem_rotbonds_unit_vectors_const);
  setKernelArg(kernel3,38,sizeof(mem_ref_orientation_quats_const),        &mem_ref_orientation_quats_const);
  kernel3_gxsize = blocksPerGridForEachLSEntity * threadsPerBlock;
  kernel3_lxsize = threadsPerBlock;
#ifdef DOCK_DEBUG
	printf("%-25s %10s %8u %10s %4u\n", "K_LOCAL_SEARCH: ", "gSize: ", kernel3_gxsize, "lSize: ", kernel3_lxsize); fflush(stdout);
#endif
// End of Kernel3


// Kernel1
	//#ifdef DOCK_DEBUG
	//	printf("Start Kernel1 ... ");fflush(stdout);
	//#endif
	runKernel1D(command_queue,kernel1,kernel1_gxsize,kernel1_lxsize,&time_start_kernel,&time_end_kernel);
	//#ifdef DOCK_DEBUG
	//	printf(" ... Finish Kernel1\n");fflush(stdout);
	//#endif
// End of Kernel1

// Kernel2
	//#ifdef DOCK_DEBUG
	//	printf("Start Kernel2 ... ");fflush(stdout);
	//#endif
	runKernel1D(command_queue,kernel2,kernel2_gxsize,kernel2_lxsize,&time_start_kernel,&time_end_kernel);
	//#ifdef DOCK_DEBUG
	//	printf(" ... Finish Kernel2\n");fflush(stdout);
	//#endif
// End of Kernel2
	// ===============================================================================


	// -------- Replacing with memory maps! ------------
#if defined (MAPPED_COPY)
	int* map_cpu_evals_of_runs;
	map_cpu_evals_of_runs = (int*) memMap(command_queue, mem_gpu_evals_of_runs, CL_MAP_READ, size_evals_of_runs);
#else
	memcopyBufferObjectFromDevice(command_queue,cpu_evals_of_runs,mem_gpu_evals_of_runs,size_evals_of_runs);
#endif
	// -------- Replacing with memory maps! ------------


	generation_cnt = 1;


	// -------- Replacing with memory maps! ------------
#if defined (MAPPED_COPY)
	while ((progress = check_progress(map_cpu_evals_of_runs, generation_cnt, mypars->num_of_energy_evals, mypars->num_of_generations, mypars->num_of_runs)) < 100.0)
#else
	while ((progress = check_progress(cpu_evals_of_runs, generation_cnt, mypars->num_of_energy_evals, mypars->num_of_generations, mypars->num_of_runs)) < 100.0)
#endif
	// -------- Replacing with memory maps! ------------

	{
#ifdef DOCK_DEBUG
    ite_cnt++;
    printf("\nIteration # %u\n", ite_cnt);
    fflush(stdout);
#endif

	 //update progress bar (bar length is 50)
	 new_progress_cnt = (int) (progress/2.0+0.5);
	 if (new_progress_cnt > 50)
	 	new_progress_cnt = 50;

	 while (curr_progress_cnt < new_progress_cnt) {
		curr_progress_cnt++;
#ifndef DOCK_DEBUG
		printf("*");
#endif
		fflush(stdout);
	}

// Kernel4
	#ifdef DOCK_DEBUG
		printf("%-25s", "K_GENETIC_GENERATION: ");fflush(stdout);
	#endif
		runKernel1D(command_queue,kernel4,kernel4_gxsize,kernel4_lxsize,&time_start_kernel,&time_end_kernel);
	#ifdef DOCK_DEBUG
		printf("%15s", " ... Finished\n");fflush(stdout);
	#endif
// End of Kernel4

// Kernel3
	#ifdef DOCK_DEBUG
		printf("%-25s", "K_LOCAL_SEARCH: ");fflush(stdout);
	#endif
		runKernel1D(command_queue,kernel3,kernel3_gxsize,kernel3_lxsize,&time_start_kernel,&time_end_kernel);
	#ifdef DOCK_DEBUG
		printf("%15s" ," ... Finished\n");fflush(stdout);
	#endif
// End of Kernel3

// Kernel2
	//#ifdef DOCK_DEBUG
	//	printf("Start Kernel2 ... ");fflush(stdout);
	//#endif
		runKernel1D(command_queue,kernel2,kernel2_gxsize,kernel2_lxsize,&time_start_kernel,&time_end_kernel);
	//#ifdef DOCK_DEBUG
	//	printf(" ... Finish Kernel2\n");fflush(stdout);
	//#endif
// End of Kernel2
		// ===============================================================================


		// -------- Replacing with memory maps! ------------
#if defined (MAPPED_COPY)
		map_cpu_evals_of_runs = (int*) memMap(command_queue, mem_gpu_evals_of_runs, CL_MAP_READ, size_evals_of_runs);
#else
		memcopyBufferObjectFromDevice(command_queue,cpu_evals_of_runs,mem_gpu_evals_of_runs,size_evals_of_runs);
#endif
		// -------- Replacing with memory maps! ------------

		generation_cnt++;

		// ----------------------------------------------------------------------
		// ORIGINAL APPROACH: switching conformation and energy pointers
		// CURRENT APPROACH:  copy data from one buffer to another, pointers are kept the same
		// IMPROVED CURRENT APPROACH
		// Kernel arguments are changed on every iteration
		// No copy from dev glob memory to dev glob memory occurs
		// Use generation_cnt as it evolves with the main loop
		// No need to use tempfloat
		// No performance improvement wrt to "CURRENT APPROACH"

		// Kernel args exchange regions they point to
		// But never two args point to the same region of dev memory
		// NO ALIASING -> use restrict in Kernel
		if (generation_cnt % 2 == 0) {
			// Kernel 4
			setKernelArg(kernel4,11,sizeof(mem_dockpars_conformations_next),                &mem_dockpars_conformations_next);
			setKernelArg(kernel4,12,sizeof(mem_dockpars_energies_next),                     &mem_dockpars_energies_next);
      setKernelArg(kernel4,13,sizeof(mem_dockpars_conformations_current),             &mem_dockpars_conformations_current);
			setKernelArg(kernel4,14,sizeof(mem_dockpars_energies_current),                  &mem_dockpars_energies_current);

			// Kernel 3
     	setKernelArg(kernel3,11,sizeof(mem_dockpars_conformations_current),             &mem_dockpars_conformations_current);
      setKernelArg(kernel3,12,sizeof(mem_dockpars_energies_current),                  &mem_dockpars_energies_current);
		}
		else { // In this configuration, the program starts
			// Kernel 4
			setKernelArg(kernel4,11,sizeof(mem_dockpars_conformations_current),             &mem_dockpars_conformations_current);
			setKernelArg(kernel4,12,sizeof(mem_dockpars_energies_current),                  &mem_dockpars_energies_current);
      setKernelArg(kernel4,13,sizeof(mem_dockpars_conformations_next),                &mem_dockpars_conformations_next);
			setKernelArg(kernel4,14,sizeof(mem_dockpars_energies_next),                     &mem_dockpars_energies_next);

			// Kernel 3
			setKernelArg(kernel3,11,sizeof(mem_dockpars_conformations_next),                &mem_dockpars_conformations_next);
      setKernelArg(kernel3,12,sizeof(mem_dockpars_energies_next),                     &mem_dockpars_energies_next);
		}
		// ----------------------------------------------------------------------

#ifdef DOCK_DEBUG
        printf("Progress %.3f %%\n", progress);
        fflush(stdout);
#endif
	} // End of while-loop


	// -------- Replacing with memory maps! ------------
#if defined (MAPPED_COPY)
	unmemMap(command_queue,mem_gpu_evals_of_runs,map_cpu_evals_of_runs);
#endif
	// -------- Replacing with memory maps! ------------


	clock_stop_docking = clock();

	//update progress bar (bar length is 50)
	while (curr_progress_cnt < 50) {
		curr_progress_cnt++;
		printf("*");
		fflush(stdout);
	}

	printf("\n\n");

	// ===============================================================================
	// OCLADock modification
	// http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2012-02-20/08-opencl.pdf
	// ===============================================================================

	//processing results
	memcopyBufferObjectFromDevice(command_queue,cpu_final_populations,mem_dockpars_conformations_current,size_populations);
	memcopyBufferObjectFromDevice(command_queue,cpu_energies,mem_dockpars_energies_current,size_energies);

#if defined (DOCK_DEBUG)
	for (int cnt_pop=0;cnt_pop<size_populations/sizeof(float);cnt_pop++)
		printf("total_num_pop: %u, cpu_final_populations[%u]: %f\n",(unsigned int)(size_populations/sizeof(float)),cnt_pop,cpu_final_populations[cnt_pop]);
Leonardo Solis's avatar
Leonardo Solis committed
725

726
727
	for (int cnt_pop=0;cnt_pop<size_energies/sizeof(float);cnt_pop++)
		printf("total_num_energies: %u, cpu_energies[%u]: %f\n",    (unsigned int)(size_energies/sizeof(float)),cnt_pop,cpu_energies[cnt_pop]);
Leonardo Solis's avatar
Leonardo Solis committed
728
#endif
729
730
731
732
733
734
735
736

	// ===============================================================================


	for (run_cnt=0; run_cnt < mypars->num_of_runs; run_cnt++)
	{
		arrange_result(cpu_final_populations+run_cnt*mypars->pop_size*GENOTYPE_LENGTH_IN_GLOBMEM, cpu_energies+run_cnt*mypars->pop_size, mypars->pop_size);

Leonardo Solis's avatar
Leonardo Solis committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
		make_resfiles(cpu_final_populations+run_cnt*mypars->pop_size*GENOTYPE_LENGTH_IN_GLOBMEM, 
			      cpu_energies+run_cnt*mypars->pop_size, &myligand_reference,
			      myligand_init, 
			      mypars, 
			      cpu_evals_of_runs[run_cnt], 
			      generation_cnt, 
			      mygrid, 
			      cpu_floatgrids, 
			      cpu_ref_ori_angles+3*run_cnt, 
			      argc, 
			      argv, 
                              /*1*/0,
			      run_cnt, 
			      &(cpu_result_ligands [run_cnt]));
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

	}

	clock_stop_program_before_clustering = clock();
	clusanal_gendlg(cpu_result_ligands, mypars->num_of_runs, myligand_init, mypars,
					 mygrid, argc, argv, ELAPSEDSECS(clock_stop_docking, clock_start_docking)/mypars->num_of_runs,
					 ELAPSEDSECS(clock_stop_program_before_clustering, clock_start_program));


	clock_stop_docking = clock();

	clReleaseMemObject(mem_atom_charges_const);
        clReleaseMemObject(mem_atom_types_const);
        clReleaseMemObject(mem_intraE_contributors_const);
        clReleaseMemObject(mem_VWpars_AC_const);
	clReleaseMemObject(mem_VWpars_BD_const);
	clReleaseMemObject(mem_dspars_S_const);
	clReleaseMemObject(mem_dspars_V_const);
        clReleaseMemObject(mem_rotlist_const);
	clReleaseMemObject(mem_ref_coords_x_const);
	clReleaseMemObject(mem_ref_coords_y_const);
	clReleaseMemObject(mem_ref_coords_z_const);
	clReleaseMemObject(mem_rotbonds_moving_vectors_const);
	clReleaseMemObject(mem_rotbonds_unit_vectors_const);
	clReleaseMemObject(mem_ref_orientation_quats_const);

	clReleaseMemObject(mem_dockpars_fgrids);
	clReleaseMemObject(mem_dockpars_conformations_current);
	clReleaseMemObject(mem_dockpars_energies_current);
	clReleaseMemObject(mem_dockpars_conformations_next);
	clReleaseMemObject(mem_dockpars_energies_next);
	clReleaseMemObject(mem_dockpars_evals_of_new_entities);
	clReleaseMemObject(mem_dockpars_prng_states);
	clReleaseMemObject(mem_gpu_evals_of_runs);

	clReleaseKernel(kernel1);
	clReleaseKernel(kernel2);
	clReleaseKernel(kernel3);
	clReleaseKernel(kernel4);
	clReleaseCommandQueue(command_queue);
	clReleaseContext(context);
	free(device_id);
	free(platform_id);

	free(cpu_init_populations);
	free(cpu_energies);
	free(cpu_result_ligands);
	free(cpu_prng_seeds);
	free(cpu_evals_of_runs);
  // -------- Replacing with memory maps! ------------
  //free(map_cpu_evals_of_runs);
	// -------- Replacing with memory maps! ------------
	free(cpu_ref_ori_angles);

	return 0;
}

double check_progress(int* evals_of_runs, int generation_cnt, int max_num_of_evals, int max_num_of_gens, int num_of_runs)
//The function checks if the stop condition of the docking is satisfied, returns 0 if no, and returns 1 if yes. The fitst
//parameter points to the array which stores the number of evaluations performed for each run. The second parameter stores
//the generations used. The other parameters describe the maximum number of energy evaluations, the maximum number of
//generations, and the number of runs, respectively. The stop condition is satisfied, if the generations used is higher
//than the maximal value, or if the average number of evaluations used is higher than the maximal value.
{
	/*	Stops if every run reached the number of evals or number of generations

	int runs_finished;
	int i;

	runs_finished = 0;
	for (i=0; i<num_of_runs; i++)
		if (evals_of_runs[i] >= max_num_of_evals)
			runs_finished++;

	if ((runs_finished >= num_of_runs) || (generation_cnt >= max_num_of_gens))
		return 1;
	else
		return 0;
        */

	//Stops if the sum of evals of every run reached the sum of the total number of evals

	double total_evals;
	int i;
	double evals_progress;
	double gens_progress;

	//calculating progress according to number of runs
	total_evals = 0.0;
	for (i=0; i<num_of_runs; i++)
		total_evals += evals_of_runs[i];

	evals_progress = total_evals/((double) num_of_runs)/max_num_of_evals*100.0;

	//calculating progress according to number of generations
	gens_progress = ((double) generation_cnt)/((double) max_num_of_gens)*100.0;

	if (evals_progress > gens_progress)
		return evals_progress;
	else
		return gens_progress;
}