calcgradient.cl 44.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/*
#include "calcenergy_basic.h"
*/
// All related pragmas are in defines.h (accesible by host and device code)

Leonardo Solis's avatar
Leonardo Solis committed
29
30
31
32
33
34
35
36

// The GPU device function calculates the energy's gradient (forces or derivatives) 
// of the entity described by genotype, dockpars and the ligand-data
// arrays in constant memory and returns it in the "gradient_genotype" parameter. 
// The parameter "run_id" has to be equal to the ID of the run 
// whose population includes the current entity (which can be determined with get_group_id(0)), 
// since this determines which reference orientation should be used.

37
38
39

//#define DEBUG_GRAD_TRANSLATION_GENES
//#define DEBUG_GRAD_ROTATION_GENES
Leonardo Solis's avatar
Leonardo Solis committed
40
//#define DEBUG_GRAD_TORSION_GENES
41
//#define DEBUG_ENERGY_KERNEL5
42

43
44
45
46
47
48
void gpu_calc_gradient(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
49
50
51
								    		// g1 = gridsize_x
				uint   dockpars_gridsize_x_times_y, 		// g2 = gridsize_x * gridsize_y
				uint   dockpars_gridsize_x_times_y_times_z,	// g3 = gridsize_x * gridsize_y * gridsize_z
52
53
54
55
56
57
58
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
59

Leonardo Solis's avatar
Leonardo Solis committed
60
61
62
63
				// Some OpenCL compilers don't allow declaring 
				// local variables within non-kernel functions.
				// These local variables must be declared in a kernel, 
				// and then passed to non-kernel functions.
64
		    	__local float* genotype,
65
			__local float* energy,
66
67
68
69
70
71
72
73
74
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,

	             __constant float* atom_charges_const,
                     __constant char*  atom_types_const,
                     __constant char*  intraE_contributors_const,
lvs's avatar
lvs committed
75
76
77
	                  	float  dockpars_smooth,
	       	     __constant float* reqm,
	       	     __constant float* reqm_hbond,
78
79
80
81
82
83
84
85
86
87
                     __constant float* VWpars_AC_const,
                     __constant float* VWpars_BD_const,
                     __constant float* dspars_S_const,
                     __constant float* dspars_V_const,
                     __constant int*   rotlist_const,
                     __constant float* ref_coords_x_const,
                     __constant float* ref_coords_y_const,
                     __constant float* ref_coords_z_const,
                     __constant float* rotbonds_moving_vectors_const,
                     __constant float* rotbonds_unit_vectors_const,
88
89
90
91
                     __constant float* ref_orientation_quats_const,
		     __constant int*   rotbonds_const,
		     __constant int*   rotbonds_atoms_const,
		     __constant int*   num_rotating_atoms_per_rotbond_const
92
93
94
95
96
97
98
99
100
101
102
103

		    // Gradient-related arguments
		    // Calculate gradients (forces) for intermolecular energy
		    // Derived from autodockdev/maps.py
		    // "is_enabled_gradient_calc": enables gradient calculation.
		    // In Genetic-Generation: no need for gradients
		    // In Gradient-Minimizer: must calculate gradients
			,
			    int    dockpars_num_of_genes,
	    	    __local float* gradient_inter_x,
	            __local float* gradient_inter_y,
	            __local float* gradient_inter_z,
104
105
106
		    __local float* gradient_intra_x,
		    __local float* gradient_intra_y,
		    __local float* gradient_intra_z,
107
108
109
		    __local float* gradient_x,
		    __local float* gradient_y,
		    __local float* gradient_z,
110
	            __local float* gradient_per_intracontributor,
111
112
113
		    __local float* gradient_genotype			
)
{
114
	// Initializing gradients (forces) 
115
116
117
118
	// Derived from autodockdev/maps.py
	for (uint atom_id = get_local_id(0);
		  atom_id < dockpars_num_of_atoms;
		  atom_id+= NUM_OF_THREADS_PER_BLOCK) {
119
		// Intermolecular gradients
120
121
122
		gradient_inter_x[atom_id] = 0.0f;
		gradient_inter_y[atom_id] = 0.0f;
		gradient_inter_z[atom_id] = 0.0f;
123
124
125
126
127
128
		// Intramolecular gradients
		gradient_intra_x[atom_id] = 0.0f;
		gradient_intra_y[atom_id] = 0.0f;
		gradient_intra_z[atom_id] = 0.0f;
	}

Leonardo Solis's avatar
Leonardo Solis committed
129
	// Initializing gradients per intramolecular contributor pairs 
130
131
132
133
	for (uint intracontrib_atompair_id = get_local_id(0);
		  intracontrib_atompair_id < dockpars_num_of_intraE_contributors;
		  intracontrib_atompair_id+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_per_intracontributor[intracontrib_atompair_id] = 0.0f;
134
135
	}

Leonardo Solis's avatar
Leonardo Solis committed
136
137
138
139
140
141
142
143
	// Initializing gradient genotypes
	for (uint gene_cnt = get_local_id(0);
		  gene_cnt < dockpars_num_of_genes;
		  gene_cnt+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_genotype[gene_cnt] = 0.0f;
	}
	barrier(CLK_LOCAL_MEM_FENCE);

144
	uchar g1 = dockpars_gridsize_x;
145
146
	uint  g2 = dockpars_gridsize_x_times_y /*dockpars_gridsize_x * dockpars_gridsize_y*/;
  	uint  g3 = dockpars_gridsize_x_times_y_times_z /*dockpars_gridsize_x * dockpars_gridsize_y * dockpars_gridsize_z*/;
147
148

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
149
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
	// ================================================
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
	{
		int rotation_list_element = rotlist_const[rotation_counter];

		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
		{
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];

			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
			{
				atom_to_rotate[0] = ref_coords_x_const[atom_id];
				atom_to_rotate[1] = ref_coords_y_const[atom_id];
				atom_to_rotate[2] = ref_coords_z_const[atom_id];
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

			// Capturing rotation vectors and angle
			float rotation_movingvec[3];

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
			{
Leonardo Solis's avatar
Leonardo Solis committed
185
				// Rotational genes in the Shoemake space are expressed in radians
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
				float u1 = genotype[3];
				float u2 = genotype[4];
				float u3 = genotype[5];

				// u1, u2, u3 should be within their valid range of [0,1]
				quatrot_left_q = native_sqrt(1 - u1) * native_sin(PI_TIMES_2*u2); 
				quatrot_left_x = native_sqrt(1 - u1) * native_cos(PI_TIMES_2*u2);
				quatrot_left_y = native_sqrt(u1)     * native_sin(PI_TIMES_2*u3);
				quatrot_left_z = native_sqrt(u1)     * native_cos(PI_TIMES_2*u3);

				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
			}
			else	// If rotating around rotatable bond
			{
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;

				float rotation_unitvec[3];
				rotation_unitvec[0] = rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = rotbonds_unit_vectors_const[3*rotbond_id+2];
				float rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;

				rotation_movingvec[0] = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = rotbonds_moving_vectors_const[3*rotbond_id+2];

				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];

				// Transforming torsion angles into quaternions
				rotation_angle  = native_divide(rotation_angle, 2.0f);
				float sin_angle = native_sin(rotation_angle);
				quatrot_left_q  = native_cos(rotation_angle);
				quatrot_left_x  = sin_angle*rotation_unitvec[0];
				quatrot_left_y  = sin_angle*rotation_unitvec[1];
				quatrot_left_z  = sin_angle*rotation_unitvec[2];
			}

			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
			{
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

				quatrot_left_q = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+1]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+3]-
						 ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+2]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+3]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+2]-
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
			}

			quatrot_temp_q = 0 -
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];

			atom_to_rotate [0] = 0 -
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
			atom_to_rotate [1] = 0 -
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
			atom_to_rotate [2] = 0 -
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;

			// Performing final movement and storing values
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
301
	// CALCULATING INTERMOLECULAR GRADIENTS
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
	// ================================================
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
	{
		uint atom_typeid = atom_types_const[atom_id];
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
		float q = atom_charges_const[atom_id];

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
			
			// Setting gradients (forces) penalties.
			// These are valid as long as they are high
			gradient_inter_x[atom_id] += 16777216.0f;
			gradient_inter_y[atom_id] += 16777216.0f;
			gradient_inter_z[atom_id] += 16777216.0f;
		}
		else
		{
			// Getting coordinates
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

336
337
			//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "dx,dy,dz", atom_id, dx, dy, dz);

338
339
340
341
342
343
344
345
346
347
348
			// Calculating interpolation weights
			float weights[2][2][2];
			weights [0][0][0] = (1-dx)*(1-dy)*(1-dz);
			weights [1][0][0] = dx*(1-dy)*(1-dz);
			weights [0][1][0] = (1-dx)*dy*(1-dz);
			weights [1][1][0] = dx*dy*(1-dz);
			weights [0][0][1] = (1-dx)*(1-dy)*dz;
			weights [1][0][1] = dx*(1-dy)*dz;
			weights [0][1][1] = (1-dx)*dy*dz;
			weights [1][1][1] = dx*dy*dz;

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
			// Capturing affinity values
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

			// -------------------------------------------------------------------
			// Deltas dx, dy, dz are already normalized 
			// (by host/src/getparameters.cpp) in OCLaDock.
			// The correspondance between vertices in xyz axes is:
			// 0, 1, 2, 3, 4, 5, 6, 7  and  000, 100, 010, 001, 101, 110, 011, 111
			// -------------------------------------------------------------------
			/*
			    deltas: (x-x0)/(x1-x0), (y-y0...
			    vertices: (000, 100, 010, 001, 101, 110, 011, 111)        

				  Z
				  '
				  3 - - - - 6
				 /.        /|
				4 - - - - 7 |
				| '       | |
				| 0 - - - + 2 -- Y
				'/        |/
				1 - - - - 5
			       /
			      X
			*/

			// Intermediate values for vectors in x-direction
			float x10, x52, x43, x76;
			float vx_z0, vx_z1;

			// Intermediate values for vectors in y-direction
			float y20, y51, y63, y74;
			float vy_z0, vy_z1;

			// Intermediate values for vectors in z-direction
			float z30, z41, z62, z75;
			float vz_y0, vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "atype" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

Leonardo Solis's avatar
Leonardo Solis committed
418
			// Vector in x-direction
419
420
421
422
423
424
425
426
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
427
			// Vector in y-direction
428
429
430
431
432
433
434
435
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
436
			// Vectors in z-direction
437
438
439
440
441
442
443
444
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

445
446
			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "atom aff", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "elec" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing electrostatic values
			atom_typeid = dockpars_num_of_atypes;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
466
			// Vector in x-direction
467
468
469
470
471
472
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
473
			gradient_inter_x[atom_id] += q * ((1 - dz) * vx_z0 + dz * vx_z1);
474

Leonardo Solis's avatar
Leonardo Solis committed
475
			// Vector in y-direction
476
477
478
479
480
481
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
482
			gradient_inter_y[atom_id] += q *((1 - dz) * vy_z0 + dz * vy_z1);
483

Leonardo Solis's avatar
Leonardo Solis committed
484
			// Vectors in z-direction
485
486
487
488
489
490
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
491
492
493
			gradient_inter_z[atom_id] += q *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "elec", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
494
495

			// -------------------------------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
496
			// Calculating gradients (forces) corresponding to 
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
			// "dsol" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing desolvation values
			atom_typeid = dockpars_num_of_atypes+1;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
514
			// Vector in x-direction
515
516
517
518
519
520
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
521
			gradient_inter_x[atom_id] += fabs(q) * ((1 - dz) * vx_z0 + dz * vx_z1);
522

Leonardo Solis's avatar
Leonardo Solis committed
523
			// Vector in y-direction
524
525
526
527
528
529
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
530
			gradient_inter_y[atom_id] += fabs(q) *((1 - dz) * vy_z0 + dz * vy_z1);
531

Leonardo Solis's avatar
Leonardo Solis committed
532
			// Vectors in z-direction
533
534
535
536
537
538
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
539
540
541
			gradient_inter_z[atom_id] += fabs(q) *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "desol", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
542
543
544
545
546
			// -------------------------------------------------------------------
		}

	} // End atom_id for-loop (INTERMOLECULAR ENERGY)

547
548
549
550
	// Inter- and intra-molecular energy calculation
	// are independent from each other, so NO barrier is needed here.
  	// As these two require different operations,
	// they can be executed only sequentially on the GPU.
551
552

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
553
	// CALCULATING INTRAMOLECULAR GRADIENTS
554
555
556
	// ================================================
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
Leonardo Solis's avatar
Leonardo Solis committed
557
	          contributor_counter+= NUM_OF_THREADS_PER_BLOCK)
558
	{
559
		// Getting atom IDs
560
561
		uint atom1_id = intraE_contributors_const[3*contributor_counter];
		uint atom2_id = intraE_contributors_const[3*contributor_counter+1];
Leonardo Solis's avatar
Leonardo Solis committed
562
563
564
565
	
		/*
		printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
		*/
566
		
Leonardo Solis's avatar
Leonardo Solis committed
567
568
569
570
571
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
572

573
		// Calculating atomic distance
574
575
		float atomic_distance = native_sqrt(subx*subx + suby*suby + subz*subz)*dockpars_grid_spacing;

576
		// Calculating gradient contributions
lvs's avatar
lvs committed
577
		if (atomic_distance < 8.0f)
578
579
580
581
		{
			// Getting type IDs
			uint atom1_typeid = atom_types_const[atom1_id];
			uint atom2_typeid = atom_types_const[atom2_id];
Leonardo Solis's avatar
Leonardo Solis committed
582
			//printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
583

lvs's avatar
lvs committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
			// Getting optimum pair distance (opt_distance) from reqm and reqm_hbond
			// reqm: equilibrium internuclear separation 
			//       (sum of the vdW radii of two like atoms (A)) in the case of vdW
			// reqm_hbond: equilibrium internuclear separation
			//  	 (sum of the vdW radii of two like atoms (A)) in the case of hbond 
			float opt_distance;

			if (intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
			{
				opt_distance = reqm_hbond [atom1_typeid] + reqm_hbond [atom2_typeid];
			}
			else	//van der Waals
			{
				opt_distance = 0.5f*(reqm [atom1_typeid] + reqm [atom2_typeid]);
			}

			// Getting smoothed distance
			// smoothed_distance = function(atomic_distance, opt_distance)
			float smoothed_distance;
			float delta_distance = 0.5f*dockpars_smooth;

			if (atomic_distance <= (opt_distance - delta_distance)) {
				smoothed_distance = atomic_distance + delta_distance;
			}
			else if (atomic_distance < (opt_distance + delta_distance)) {
				smoothed_distance = opt_distance;
			}
			else { // else if (atomic_distance >= (opt_distance + delta_distance))
				smoothed_distance = atomic_distance - delta_distance;
			}

/*
			if (get_local_id (0) == 0) {

				if (intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
				{
					printf("%-5s %u %u %f %f %f %f %f %f\n", "hbond", atom1_typeid, atom2_typeid, reqm_hbond [atom1_typeid], reqm_hbond [atom2_typeid], opt_distance, delta_distance, atomic_distance, smoothed_distance);

				}
				else	//van der Waals
				{
					printf("%-5s %u %u %f %f %f %f %f %f\n", "vdw", atom1_typeid, atom2_typeid, reqm [atom1_typeid], reqm [atom2_typeid], opt_distance, delta_distance, atomic_distance, smoothed_distance);	
				}
			}
*/

630
631
			// Calculating van der Waals / hydrogen bond term
			gradient_per_intracontributor[contributor_counter] += native_divide (-12*VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
lvs's avatar
lvs committed
632
									                     native_powr(smoothed_distance/*atomic_distance*/, 13)
633
									       		    );
634

635
636
			if (intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
				gradient_per_intracontributor[contributor_counter] += native_divide (10*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
lvs's avatar
lvs committed
637
										                     native_powr(smoothed_distance/*atomic_distance*/, 11)
638
												    );
639
640
641
			}
			else {	//van der Waals
				gradient_per_intracontributor[contributor_counter] += native_divide (6*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
lvs's avatar
lvs committed
642
										                     native_powr(smoothed_distance/*atomic_distance*/, 7)
643
644
										                    );
			}
645

646
647
			// Calculating electrostatic term
			// http://www.wolframalpha.com/input/?i=1%2F(x*(A%2B(B%2F(1%2BK*exp(-h*B*x)))))
Leonardo Solis's avatar
Leonardo Solis committed
648
			float upper = DIEL_A*native_powr(native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K, 2) + (DIEL_B)*native_exp(DIEL_B_TIMES_H*atomic_distance)*(DIEL_B_TIMES_H_TIMES_K*atomic_distance + native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K);
649
		
Leonardo Solis's avatar
Leonardo Solis committed
650
			float lower = native_powr(atomic_distance, 2) * native_powr(DIEL_A * (native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K) + DIEL_B * native_exp(DIEL_B_TIMES_H*atomic_distance), 2);
651

Leonardo Solis's avatar
Leonardo Solis committed
652
        		gradient_per_intracontributor[contributor_counter] +=  -dockpars_coeff_elec * atom_charges_const[atom1_id] * atom_charges_const[atom2_id] * native_divide (upper, lower);
653

654
655
656
657
658
659
			// Calculating desolvation term
			gradient_per_intracontributor[contributor_counter] += (
									       (dspars_S_const[atom1_typeid] + dockpars_qasp*fabs(atom_charges_const[atom1_id])) * dspars_V_const[atom2_typeid] +
							                       (dspars_S_const[atom2_typeid] + dockpars_qasp*fabs(atom_charges_const[atom2_id])) * dspars_V_const[atom1_typeid]
				        				      ) *
					                       			dockpars_coeff_desolv * -0.07716049382716049 * atomic_distance * native_exp(-0.038580246913580245*native_powr(atomic_distance, 2));
660

661
		}
662

663
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)
664

665
	barrier(CLK_LOCAL_MEM_FENCE);
666

667
	// Accumulating gradients from "gradient_per_intracontributor" for each each
668
669
670
671
672
673
674
675
676
	if (get_local_id(0) == 0) {
		for (uint contributor_counter = 0;
			  contributor_counter < dockpars_num_of_intraE_contributors;
			  contributor_counter ++) {

			// Getting atom IDs
			uint atom1_id = intraE_contributors_const[3*contributor_counter];
			uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

677
678
679
680
681
682
			// Calculating xyz distances in Angstroms of vector
			// that goes from "atom1_id"-to-"atom2_id"
			float subx = (calc_coords_x[atom2_id] - calc_coords_x[atom1_id]);
			float suby = (calc_coords_y[atom2_id] - calc_coords_y[atom1_id]);
			float subz = (calc_coords_z[atom2_id] - calc_coords_z[atom1_id]);
			float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
683

684
685
686
687
			float subx_div_dist = native_divide(subx, dist);
			float suby_div_dist = native_divide(suby, dist);
			float subz_div_dist = native_divide(subz, dist);

688
689
690
			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
691
692
693
			gradient_intra_x[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom1_id] -= gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subz_div_dist;
694

695
696
697
			gradient_intra_x[atom2_id] += gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom2_id] += gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom2_id] += gradient_per_intracontributor[contributor_counter] * subz_div_dist;
698
699

			//printf("%-20s %-10u %-5u %-5u %-10.8f\n", "grad_intracontrib", contributor_counter, atom1_id, atom2_id, gradient_per_intracontributor[contributor_counter]);
700
701
702
		}
	}
	
703
704
705

	barrier(CLK_LOCAL_MEM_FENCE);

706
707
708
709
	// Accumulating inter- and intramolecular gradients
	for (uint atom_cnt = get_local_id(0);
		  atom_cnt < dockpars_num_of_atoms;
		  atom_cnt+= NUM_OF_THREADS_PER_BLOCK) {
710
711
712
713
714
715

		// Grid gradients were calculated in the grid space,
		// so they have to be put back in Angstrom.

		// Intramolecular gradients were already in Angstrom,
		// so no scaling for them is required.
716
717
718
		gradient_inter_x[atom_cnt] = native_divide(gradient_inter_x[atom_cnt], dockpars_grid_spacing);
		gradient_inter_y[atom_cnt] = native_divide(gradient_inter_y[atom_cnt], dockpars_grid_spacing);
		gradient_inter_z[atom_cnt] = native_divide(gradient_inter_z[atom_cnt], dockpars_grid_spacing);
719

720
721
722
		gradient_x[atom_cnt] = gradient_inter_x[atom_cnt] + gradient_intra_x[atom_cnt];
		gradient_y[atom_cnt] = gradient_inter_y[atom_cnt] + gradient_intra_y[atom_cnt];
		gradient_z[atom_cnt] = gradient_inter_z[atom_cnt] + gradient_intra_z[atom_cnt];
723
	
724
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_grid", atom_cnt, gradient_inter_x[atom_cnt], gradient_inter_y[atom_cnt], gradient_inter_z[atom_cnt]);
725
726
727
728
729

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_intra", atom_cnt, gradient_intra_x[atom_cnt], gradient_intra_y[atom_cnt], gradient_intra_z[atom_cnt]);

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "calc_coords", atom_cnt, calc_coords_x[atom_cnt], calc_coords_y[atom_cnt], calc_coords_z[atom_cnt]);

730
731
	}

732
733
	barrier(CLK_LOCAL_MEM_FENCE);

734
	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
735
	// Obtaining translation-related gradients
736
737
738
739
740
	// ------------------------------------------
	if (get_local_id(0) == 0) {
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
741
742
743
			gradient_genotype[0] += gradient_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_z[lig_atom_id]; // gradient for gene 2: gene z
744
		}
745

746
747
748
749
750
751
752
753
754
		// Scaling gradient for translational genes as 
		// their corresponding gradients were calculated in the space 
		// where these genes are in Angstrom,
		// but OCLaDock translational genes are within in grids
		gradient_genotype[0] *= dockpars_grid_spacing;
		gradient_genotype[1] *= dockpars_grid_spacing;
		gradient_genotype[2] *= dockpars_grid_spacing;

		#if defined (DEBUG_GRAD_TRANSLATION_GENES)
755
756
757
		printf("gradient_x:%f\n", gradient_genotype [0]);
		printf("gradient_y:%f\n", gradient_genotype [1]);
		printf("gradient_z:%f\n", gradient_genotype [2]);
758
		#endif
759
760
761
	}

	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
762
763
	// Obtaining rotation-related gradients
	// ------------------------------------------ 
764
765
766
767
768
769
770
771
772
773
774
				
	// Transform gradients_inter_{x|y|z} 
	// into local_gradients[i] (with four quaternion genes)
	// Derived from autodockdev/motions.py/forces_to_delta_genes()

	// Transform local_gradients[i] (with four quaternion genes)
	// into local_gradients[i] (with three Shoemake genes)
	// Derived from autodockdev/motions.py/_get_cube3_gradient()
	// ------------------------------------------
	if (get_local_id(0) == 1) {

775
776
777
778
		float3 torque_rot;
		torque_rot.x = 0.0f;
		torque_rot.y = 0.0f;
		torque_rot.z = 0.0f;
779

780
		#if defined (DEBUG_GRAD_ROTATION_GENES)
781
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "initial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
782
		#endif
783

784
		// Declaring a variable to hold the center of rotation 
785
786
		// In getparameters.cpp, it indicates 
		// translation genes are in grid spacing (instead of Angstroms)
Leonardo Solis's avatar
Leonardo Solis committed
787
		float3 about;
788
789
790
		about.x = genotype[0];
		about.y = genotype[1];
		about.z = genotype[2];
791
	
792
793
794
		// Temporal variable to calculate translation differences.
		// They are converted back to Angstroms here
		float3 r;
795
			
796
797
798
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
Leonardo Solis's avatar
Leonardo Solis committed
799
800
801
			r.x = (calc_coords_x[lig_atom_id] - about.x) * dockpars_grid_spacing; 
			r.y = (calc_coords_y[lig_atom_id] - about.y) * dockpars_grid_spacing;  
			r.z = (calc_coords_z[lig_atom_id] - about.z) * dockpars_grid_spacing; 
802

803
804
805
806
807
			float3 force;
			force.x	= gradient_x[lig_atom_id];
			force.y	= gradient_y[lig_atom_id]; 
			force.z	= gradient_z[lig_atom_id];

808
			torque_rot += cross(r, force);
809
810

			#if defined (DEBUG_GRAD_ROTATION_GENES)
811
812
813
814
815
			printf("%-20s %-10u\n", "contrib. of atom-id: ", lig_atom_id);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "r             : ", r.x, r.y, r.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "force         : ", force.x, force.y, force.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "partial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
			printf("\n");
816
			#endif
817
		}
818

819
		#if defined (DEBUG_GRAD_ROTATION_GENES)
820
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "final torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
821
		#endif
822
823
824

		// Derived from rotation.py/axisangle_to_q()
		// genes[3:7] = rotation.axisangle_to_q(torque, rad)
825
		float torque_length = fast_length(torque_rot);
826
827
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
828
		printf("%-20s %-10.5f\n", "torque length: ", torque_length);
829
		#endif
830

831
		/*
832
		// Infinitesimal rotation in radians
833
		const float infinitesimal_radian = 1E-5;
834
		*/
835
836
837
838

		// Finding the quaternion that performs
		// the infinitesimal rotation around torque axis
		float4 quat_torque;
839
840
841
842
843
844
845
846
847
848
849
		#if 0
		quat_torque.w = native_cos(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.x = fast_normalize(torque_rot).x * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.y = fast_normalize(torque_rot).y * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.z = fast_normalize(torque_rot).z * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		#endif

		quat_torque.w = COS_HALF_INFINITESIMAL_RADIAN;
		quat_torque.x = fast_normalize(torque_rot).x * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.y = fast_normalize(torque_rot).y * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.z = fast_normalize(torque_rot).z * SIN_HALF_INFINITESIMAL_RADIAN;
850
851

		#if defined (DEBUG_GRAD_ROTATION_GENES)
852
		printf("%-20s %-10.5f %-10.5f %-10.5f %-10.5f\n", "quat_torque (w,x,y,z): ", quat_torque.w, quat_torque.x, quat_torque.y, quat_torque.z);
853
		#endif
854

Leonardo Solis's avatar
Leonardo Solis committed
855
		// Converting quaternion gradients into Shoemake gradients 
856
857
		// Derived from autodockdev/motion.py/_get_cube3_gradient

858
		// This is where we are in Shoemake space
859
860
861
862
		float current_u1, current_u2, current_u3;
		current_u1 = genotype[3]; // check very initial input Shoemake genes
		current_u2 = genotype[4];
		current_u3 = genotype[5];
863
864
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
865
		printf("%-30s %-10.5f %-10.5f %-10.5f\n", "current_u (1,2,3): ", genotype[3], genotype[4], genotype[5]);
866
		#endif		
867

Leonardo Solis's avatar
Leonardo Solis committed
868
		// This is where we are in quaternion space
869
		// current_q = cube3_to_quaternion(current_u)
870
871
872
873
874
		float4 current_q;
		current_q.w = native_sqrt(1-current_u1) * native_sin(PI_TIMES_2*current_u2);
		current_q.x = native_sqrt(1-current_u1) * native_cos(PI_TIMES_2*current_u2);
		current_q.y = native_sqrt(current_u1)   * native_sin(PI_TIMES_2*current_u3);
		current_q.z = native_sqrt(current_u1)   * native_cos(PI_TIMES_2*current_u3);
875
876

		#if defined (DEBUG_GRAD_ROTATION_GENES)
877
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "current_q (w,x,y,z): ", current_q.w, current_q.x, current_q.y, current_q.z);
878
		#endif
879

Leonardo Solis's avatar
Leonardo Solis committed
880
		// This is where we want to be in quaternion space
881
		float4 target_q;
882
883
884
885

		// target_q = rotation.q_mult(q, current_q)
		// Derived from autodockdev/rotation.py/q_mult()
		// In our terms means q_mult(quat_{w|x|y|z}, current_q{w|x|y|z})
886
887
888
889
		target_q.w = quat_torque.w*current_q.w - quat_torque.x*current_q.x - quat_torque.y*current_q.y - quat_torque.z*current_q.z;// w
		target_q.x = quat_torque.w*current_q.x + quat_torque.x*current_q.w + quat_torque.y*current_q.z - quat_torque.z*current_q.y;// x
		target_q.y = quat_torque.w*current_q.y + quat_torque.y*current_q.w + quat_torque.z*current_q.x - quat_torque.x*current_q.z;// y
		target_q.z = quat_torque.w*current_q.z + quat_torque.z*current_q.w + quat_torque.x*current_q.y - quat_torque.y*current_q.x;// z
890
		#if defined (DEBUG_GRAD_ROTATION_GENES)
891
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "target_q (w,x,y,z): ", target_q.w, target_q.x, target_q.y, target_q.z);
892
		#endif
893

894
		// This is where we want to be in Shoemake space
895
896
897
898
899
		float target_u1, target_u2, target_u3;

		// target_u = quaternion_to_cube3(target_q)
		// Derived from autodockdev/motions.py/quaternion_to_cube3()
		// In our terms means quaternion_to_cube3(target_q{w|x|y|z})
900
901
902
		target_u1 = target_q.y*target_q.y + target_q.z*target_q.z;
		target_u2 = atan2(target_q.w, target_q.x);
		target_u3 = atan2(target_q.y, target_q.z);
903
		
904
905
906
907
908
909
		if (target_u2 < 0.0f)       { target_u2 += PI_TIMES_2; }
		if (target_u2 > PI_TIMES_2) { target_u2 -= PI_TIMES_2; }
		if (target_u3 < 0.0f) 	    { target_u3 += PI_TIMES_2; }
		if (target_u3 > PI_TIMES_2) { target_u3 -= PI_TIMES_2; }

		#if defined (DEBUG_GRAD_ROTATION_GENES)
910
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "target_u (1,2,3) - after mapping: ", target_u1, target_u2, target_u3);
911
		#endif
912
913
914
915
916
917
		
   		// The infinitesimal rotation will produce an infinitesimal displacement
    		// in shoemake space. This is to guarantee that the direction of
    		// the displacement in shoemake space is not distorted.
    		// The correct amount of displacement in shoemake space is obtained
		// by multiplying the infinitesimal displacement by shoemake_scaling:
918
919
		//float shoemake_scaling = native_divide(torque_length, INFINITESIMAL_RADIAN/*infinitesimal_radian*/);
		float shoemake_scaling = torque_length * INV_INFINITESIMAL_RADIAN;
920

Leonardo Solis's avatar
Leonardo Solis committed
921
		// Derivates in cube3
922
923
		// "current_u2" and "current_u3" are mapped into 
		// the same range [0, 2PI] of "target_u2" and "target_u3"
924
		float grad_u1, grad_u2, grad_u3;
925
		grad_u1 = shoemake_scaling * (target_u1 - current_u1);
926
927
		grad_u2 = shoemake_scaling * (target_u2 - current_u2 * PI_TIMES_2);
		grad_u3 = shoemake_scaling * (target_u3 - current_u3 * PI_TIMES_2);
928
929

		#if defined (DEBUG_GRAD_ROTATION_GENES)
930
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "grad_u (1,2,3) - before emp. scaling: ", grad_u1, grad_u2, grad_u3);
931
		#endif
932
			
Leonardo Solis's avatar
Leonardo Solis committed
933
		// Empirical scaling
934
		float temp_u1 = genotype[3];
935
			
936
		if ((0.0f < temp_u1) && (temp_u1 < 1.0f)){
937
			grad_u1 *= (native_divide(1.0f, temp_u1) + native_divide(1.0f, (1.0f-temp_u1)));
938
		}
939
940
		grad_u2 *= 4.0f * (1.0f-temp_u1);
		grad_u3 *= 4.0f * temp_u1;
941
942

		#if defined (DEBUG_GRAD_ROTATION_GENES)
943
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "grad_u (1,2,3) - after emp. scaling: ", grad_u1, grad_u2, grad_u3);
944
		#endif
945
		
946
947
948
949
		// Setting gradient rotation-related genotypes in cube3.
		// Scaling gradient for u2 and u3 genes as 
		// their corresponding gradients were calculated in the space where u2/3 are within [0, 2PI]
		// but OCLaDock u2/3 genes are within [0, 1]
950
		gradient_genotype[3] = grad_u1;
951
952
		gradient_genotype[4] = grad_u2 * PI_TIMES_2; 
		gradient_genotype[5] = grad_u3 * PI_TIMES_2;
953
954
	}

Leonardo Solis's avatar
Leonardo Solis committed
955
956
957
	// ------------------------------------------
	// Obtaining torsion-related gradients
	// ------------------------------------------
958
959
960
961
962
963
	if (get_local_id(0) == 2) {

		for (uint rotbond_id = 0;
			  rotbond_id < dockpars_num_of_genes-6;
			  rotbond_id ++) {

964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
			// Querying ids of atoms belonging to the rotatable bond in question
			int atom1_id = rotbonds_const[2*rotbond_id];
			int atom2_id = rotbonds_const[2*rotbond_id+1];

			float3 atomRef_coords;
			atomRef_coords.x = calc_coords_x[atom1_id];
			atomRef_coords.y = calc_coords_y[atom1_id];
			atomRef_coords.z = calc_coords_z[atom1_id];

			#if defined (DEBUG_GRAD_TORSION_GENES)
			printf("%-15s %-10u\n", "rotbond_id: ", rotbond_id);
			printf("%-15s %-10i\n", "atom1_id: ", atom1_id);
			printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom1_coords: ", calc_coords_x[atom1_id], calc_coords_y[atom1_id], calc_coords_z[atom1_id]);
			printf("%-15s %-10i\n", "atom2_id: ", atom2_id);
			printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom2_coords: ", calc_coords_x[atom2_id], calc_coords_y[atom2_id], calc_coords_z[atom2_id]);
			printf("\n");
			#endif		

982
			float3 rotation_unitvec;
983
			/*
984
985
986
			rotation_unitvec.x = rotbonds_unit_vectors_const[3*rotbond_id];
			rotation_unitvec.y = rotbonds_unit_vectors_const[3*rotbond_id+1];
			rotation_unitvec.z = rotbonds_unit_vectors_const[3*rotbond_id+2];
987
988
989
990
991
992
			*/
			rotation_unitvec.x = calc_coords_x[atom2_id] - calc_coords_x[atom1_id];
			rotation_unitvec.y = calc_coords_y[atom2_id] - calc_coords_y[atom1_id];
			rotation_unitvec.z = calc_coords_z[atom2_id] - calc_coords_z[atom1_id];
			rotation_unitvec = fast_normalize(rotation_unitvec);

993
			// Torque of torsions
994
995
996
997
998
999
1000
			float3 torque_tor;
			torque_tor.x = 0.0f;
			torque_tor.y = 0.0f;
			torque_tor.z = 0.0f;

			// Iterating over each ligand atom that rotates 
			// if the bond in question rotates