calcgradient.cl 47.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/*
#include "calcenergy_basic.h"
*/
// All related pragmas are in defines.h (accesible by host and device code)

Leonardo Solis's avatar
Leonardo Solis committed
29
30
31
32
33
34
35
36

// The GPU device function calculates the energy's gradient (forces or derivatives) 
// of the entity described by genotype, dockpars and the ligand-data
// arrays in constant memory and returns it in the "gradient_genotype" parameter. 
// The parameter "run_id" has to be equal to the ID of the run 
// whose population includes the current entity (which can be determined with get_group_id(0)), 
// since this determines which reference orientation should be used.

37
38
39

//#define DEBUG_GRAD_TRANSLATION_GENES
//#define DEBUG_GRAD_ROTATION_GENES
Leonardo Solis's avatar
Leonardo Solis committed
40
//#define DEBUG_GRAD_TORSION_GENES
41
//#define DEBUG_ENERGY_KERNEL5
42

43

lvs's avatar
lvs committed
44
45
46
47
// Atomic operations used in gradients of intra contributors.
// Only atomic_cmpxchg() works on floats. 
// So for atomic add on floats, this link was used:
// https://streamhpc.com/blog/2016-02-09/atomic-operations-for-floats-in-opencl-improved/
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
void atomicAdd_g_f(volatile __local float *addr, float val)
{
	union{
		unsigned int u32;
		float f32;
	} next, expected, current;

	current.f32 = *addr;

	do{
		expected.f32 = current.f32;
		next.f32 = expected.f32 + val;
		current.u32 = atomic_cmpxchg( (volatile __local unsigned int *)addr, expected.u32, next.u32);
	} while( current.u32 != expected.u32 );
}

void atomicSub_g_f(volatile __local float *addr, float val)
{
	union{
		unsigned int u32;
		float f32;
	} next, expected, current;

	current.f32 = *addr;

	do{
		expected.f32 = current.f32;
		next.f32 = expected.f32 - val;
		current.u32 = atomic_cmpxchg( (volatile __local unsigned int *)addr, expected.u32, next.u32);
	} while( current.u32 != expected.u32 );
}
lvs's avatar
lvs committed
79

80

81
82
83
84
85
86
void gpu_calc_gradient(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
87
88
89
								    		// g1 = gridsize_x
				uint   dockpars_gridsize_x_times_y, 		// g2 = gridsize_x * gridsize_y
				uint   dockpars_gridsize_x_times_y_times_z,	// g3 = gridsize_x * gridsize_y * gridsize_z
90
91
92
93
94
95
96
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
97

Leonardo Solis's avatar
Leonardo Solis committed
98
99
100
101
				// Some OpenCL compilers don't allow declaring 
				// local variables within non-kernel functions.
				// These local variables must be declared in a kernel, 
				// and then passed to non-kernel functions.
102
		    	__local float* genotype,
103
			__local float* energy,
104
105
106
107
108
109
110
111
112
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,

	             __constant float* atom_charges_const,
                     __constant char*  atom_types_const,
                     __constant char*  intraE_contributors_const,
lvs's avatar
lvs committed
113
114
115
	                  	float  dockpars_smooth,
	       	     __constant float* reqm,
	       	     __constant float* reqm_hbond,
116
117
118
119
120
121
122
123
124
125
                     __constant float* VWpars_AC_const,
                     __constant float* VWpars_BD_const,
                     __constant float* dspars_S_const,
                     __constant float* dspars_V_const,
                     __constant int*   rotlist_const,
                     __constant float* ref_coords_x_const,
                     __constant float* ref_coords_y_const,
                     __constant float* ref_coords_z_const,
                     __constant float* rotbonds_moving_vectors_const,
                     __constant float* rotbonds_unit_vectors_const,
126
127
128
129
                     __constant float* ref_orientation_quats_const,
		     __constant int*   rotbonds_const,
		     __constant int*   rotbonds_atoms_const,
		     __constant int*   num_rotating_atoms_per_rotbond_const
130
131
132
133
134
135
136
137
138
139
140
141

		    // Gradient-related arguments
		    // Calculate gradients (forces) for intermolecular energy
		    // Derived from autodockdev/maps.py
		    // "is_enabled_gradient_calc": enables gradient calculation.
		    // In Genetic-Generation: no need for gradients
		    // In Gradient-Minimizer: must calculate gradients
			,
			    int    dockpars_num_of_genes,
	    	    __local float* gradient_inter_x,
	            __local float* gradient_inter_y,
	            __local float* gradient_inter_z,
142
143
144
		    __local float* gradient_intra_x,
		    __local float* gradient_intra_y,
		    __local float* gradient_intra_z,
145
/*
146
147
148
		    __local float* gradient_x,
		    __local float* gradient_y,
		    __local float* gradient_z,
149
*/
150
151
152
		    __local float* gradient_genotype			
)
{
153
	// Initializing gradients (forces) 
154
155
156
157
	// Derived from autodockdev/maps.py
	for (uint atom_id = get_local_id(0);
		  atom_id < dockpars_num_of_atoms;
		  atom_id+= NUM_OF_THREADS_PER_BLOCK) {
158
		// Intermolecular gradients
159
160
161
		gradient_inter_x[atom_id] = 0.0f;
		gradient_inter_y[atom_id] = 0.0f;
		gradient_inter_z[atom_id] = 0.0f;
162
163
164
165
166
167
		// Intramolecular gradients
		gradient_intra_x[atom_id] = 0.0f;
		gradient_intra_y[atom_id] = 0.0f;
		gradient_intra_z[atom_id] = 0.0f;
	}

Leonardo Solis's avatar
Leonardo Solis committed
168
169
170
171
172
173
174
175
	// Initializing gradient genotypes
	for (uint gene_cnt = get_local_id(0);
		  gene_cnt < dockpars_num_of_genes;
		  gene_cnt+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_genotype[gene_cnt] = 0.0f;
	}
	barrier(CLK_LOCAL_MEM_FENCE);

176
	uchar g1 = dockpars_gridsize_x;
177
178
	uint  g2 = dockpars_gridsize_x_times_y /*dockpars_gridsize_x * dockpars_gridsize_y*/;
  	uint  g3 = dockpars_gridsize_x_times_y_times_z /*dockpars_gridsize_x * dockpars_gridsize_y * dockpars_gridsize_z*/;
179
180

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
181
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
	// ================================================
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
	{
		int rotation_list_element = rotlist_const[rotation_counter];

		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
		{
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];

			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
			{
				atom_to_rotate[0] = ref_coords_x_const[atom_id];
				atom_to_rotate[1] = ref_coords_y_const[atom_id];
				atom_to_rotate[2] = ref_coords_z_const[atom_id];
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

			// Capturing rotation vectors and angle
			float rotation_movingvec[3];

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
			{
Leonardo Solis's avatar
Leonardo Solis committed
217
				// Rotational genes in the Shoemake space are expressed in radians
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
				float u1 = genotype[3];
				float u2 = genotype[4];
				float u3 = genotype[5];

				// u1, u2, u3 should be within their valid range of [0,1]
				quatrot_left_q = native_sqrt(1 - u1) * native_sin(PI_TIMES_2*u2); 
				quatrot_left_x = native_sqrt(1 - u1) * native_cos(PI_TIMES_2*u2);
				quatrot_left_y = native_sqrt(u1)     * native_sin(PI_TIMES_2*u3);
				quatrot_left_z = native_sqrt(u1)     * native_cos(PI_TIMES_2*u3);

				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
			}
			else	// If rotating around rotatable bond
			{
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;

				float rotation_unitvec[3];
				rotation_unitvec[0] = rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = rotbonds_unit_vectors_const[3*rotbond_id+2];
				float rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;

				rotation_movingvec[0] = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = rotbonds_moving_vectors_const[3*rotbond_id+2];

				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];

				// Transforming torsion angles into quaternions
lvs's avatar
lvs committed
253
254
255
256
				//----------------------------------
				// fastergrad
				//----------------------------------
				/*
257
				rotation_angle  = native_divide(rotation_angle, 2.0f);
lvs's avatar
lvs committed
258
259
260
261
				*/
				rotation_angle  = rotation_angle * 0.5f;
				//----------------------------------

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
				float sin_angle = native_sin(rotation_angle);
				quatrot_left_q  = native_cos(rotation_angle);
				quatrot_left_x  = sin_angle*rotation_unitvec[0];
				quatrot_left_y  = sin_angle*rotation_unitvec[1];
				quatrot_left_z  = sin_angle*rotation_unitvec[2];
			}

			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
			{
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

				quatrot_left_q = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+1]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+3]-
						 ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+2]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+3]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+2]-
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
			}

			quatrot_temp_q = 0 -
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];

			atom_to_rotate [0] = 0 -
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
			atom_to_rotate [1] = 0 -
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
			atom_to_rotate [2] = 0 -
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;

			// Performing final movement and storing values
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
341
	// CALCULATING INTERMOLECULAR GRADIENTS
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
	// ================================================
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
	{
		uint atom_typeid = atom_types_const[atom_id];
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
		float q = atom_charges_const[atom_id];

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
			
			// Setting gradients (forces) penalties.
			// These are valid as long as they are high
			gradient_inter_x[atom_id] += 16777216.0f;
			gradient_inter_y[atom_id] += 16777216.0f;
			gradient_inter_z[atom_id] += 16777216.0f;
		}
		else
		{
			// Getting coordinates
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

376
377
			//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "dx,dy,dz", atom_id, dx, dy, dz);

378
379
380
381
382
383
384
385
386
387
388
			// Calculating interpolation weights
			float weights[2][2][2];
			weights [0][0][0] = (1-dx)*(1-dy)*(1-dz);
			weights [1][0][0] = dx*(1-dy)*(1-dz);
			weights [0][1][0] = (1-dx)*dy*(1-dz);
			weights [1][1][0] = dx*dy*(1-dz);
			weights [0][0][1] = (1-dx)*(1-dy)*dz;
			weights [1][0][1] = dx*(1-dy)*dz;
			weights [0][1][1] = (1-dx)*dy*dz;
			weights [1][1][1] = dx*dy*dz;

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
			// Capturing affinity values
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

			// -------------------------------------------------------------------
			// Deltas dx, dy, dz are already normalized 
			// (by host/src/getparameters.cpp) in OCLaDock.
			// The correspondance between vertices in xyz axes is:
			// 0, 1, 2, 3, 4, 5, 6, 7  and  000, 100, 010, 001, 101, 110, 011, 111
			// -------------------------------------------------------------------
			/*
			    deltas: (x-x0)/(x1-x0), (y-y0...
			    vertices: (000, 100, 010, 001, 101, 110, 011, 111)        

				  Z
				  '
				  3 - - - - 6
				 /.        /|
				4 - - - - 7 |
				| '       | |
				| 0 - - - + 2 -- Y
				'/        |/
				1 - - - - 5
			       /
			      X
			*/

			// Intermediate values for vectors in x-direction
			float x10, x52, x43, x76;
			float vx_z0, vx_z1;

			// Intermediate values for vectors in y-direction
			float y20, y51, y63, y74;
			float vy_z0, vy_z1;

			// Intermediate values for vectors in z-direction
			float z30, z41, z62, z75;
			float vz_y0, vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "atype" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

Leonardo Solis's avatar
Leonardo Solis committed
458
			// Vector in x-direction
459
460
461
462
463
464
465
466
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
467
			// Vector in y-direction
468
469
470
471
472
473
474
475
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
476
			// Vectors in z-direction
477
478
479
480
481
482
483
484
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

485
486
			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "atom aff", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "elec" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing electrostatic values
			atom_typeid = dockpars_num_of_atypes;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
506
			// Vector in x-direction
507
508
509
510
511
512
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
513
			gradient_inter_x[atom_id] += q * ((1 - dz) * vx_z0 + dz * vx_z1);
514

Leonardo Solis's avatar
Leonardo Solis committed
515
			// Vector in y-direction
516
517
518
519
520
521
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
522
			gradient_inter_y[atom_id] += q *((1 - dz) * vy_z0 + dz * vy_z1);
523

Leonardo Solis's avatar
Leonardo Solis committed
524
			// Vectors in z-direction
525
526
527
528
529
530
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
531
532
533
			gradient_inter_z[atom_id] += q *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "elec", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
534
535

			// -------------------------------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
536
			// Calculating gradients (forces) corresponding to 
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
			// "dsol" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing desolvation values
			atom_typeid = dockpars_num_of_atypes+1;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
554
			// Vector in x-direction
555
556
557
558
559
560
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
561
			gradient_inter_x[atom_id] += fabs(q) * ((1 - dz) * vx_z0 + dz * vx_z1);
562

Leonardo Solis's avatar
Leonardo Solis committed
563
			// Vector in y-direction
564
565
566
567
568
569
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
570
			gradient_inter_y[atom_id] += fabs(q) *((1 - dz) * vy_z0 + dz * vy_z1);
571

Leonardo Solis's avatar
Leonardo Solis committed
572
			// Vectors in z-direction
573
574
575
576
577
578
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
579
580
581
			gradient_inter_z[atom_id] += fabs(q) *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "desol", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
582
583
584
585
586
			// -------------------------------------------------------------------
		}

	} // End atom_id for-loop (INTERMOLECULAR ENERGY)

587
588
589
590
	// Inter- and intra-molecular energy calculation
	// are independent from each other, so NO barrier is needed here.
  	// As these two require different operations,
	// they can be executed only sequentially on the GPU.
591
592

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
593
	// CALCULATING INTRAMOLECULAR GRADIENTS
594
595
596
	// ================================================
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
Leonardo Solis's avatar
Leonardo Solis committed
597
	          contributor_counter+= NUM_OF_THREADS_PER_BLOCK)
598
	{
lvs's avatar
lvs committed
599
600
		// Storing in a private variable 
		// the gradient contribution of each contributing atomic pair
601
602
		float priv_gradient_per_intracontributor= 0.0f;

603
		// Getting atom IDs
604
605
		uint atom1_id = intraE_contributors_const[3*contributor_counter];
		uint atom2_id = intraE_contributors_const[3*contributor_counter+1];
Leonardo Solis's avatar
Leonardo Solis committed
606
607
608
609
	
		/*
		printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
		*/
610
		
Leonardo Solis's avatar
Leonardo Solis committed
611
612
613
614
615
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
616

617
		// Calculating atomic distance
618
619
		float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
		float atomic_distance = dist*dockpars_grid_spacing;
620

621
		// Calculating gradient contributions
lvs's avatar
lvs committed
622
		if (atomic_distance < 8.0f)
623
624
625
626
		{
			// Getting type IDs
			uint atom1_typeid = atom_types_const[atom1_id];
			uint atom2_typeid = atom_types_const[atom2_id];
Leonardo Solis's avatar
Leonardo Solis committed
627
			//printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
628

lvs's avatar
lvs committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
			// Getting optimum pair distance (opt_distance) from reqm and reqm_hbond
			// reqm: equilibrium internuclear separation 
			//       (sum of the vdW radii of two like atoms (A)) in the case of vdW
			// reqm_hbond: equilibrium internuclear separation
			//  	 (sum of the vdW radii of two like atoms (A)) in the case of hbond 
			float opt_distance;

			if (intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
			{
				opt_distance = reqm_hbond [atom1_typeid] + reqm_hbond [atom2_typeid];
			}
			else	//van der Waals
			{
				opt_distance = 0.5f*(reqm [atom1_typeid] + reqm [atom2_typeid]);
			}

			// Getting smoothed distance
			// smoothed_distance = function(atomic_distance, opt_distance)
			float smoothed_distance;
			float delta_distance = 0.5f*dockpars_smooth;

			if (atomic_distance <= (opt_distance - delta_distance)) {
				smoothed_distance = atomic_distance + delta_distance;
			}
			else if (atomic_distance < (opt_distance + delta_distance)) {
				smoothed_distance = opt_distance;
			}
			else { // else if (atomic_distance >= (opt_distance + delta_distance))
				smoothed_distance = atomic_distance - delta_distance;
			}

/*
			if (get_local_id (0) == 0) {

				if (intraE_contributors_const[3*contributor_counter+2] == 1)	//H-bond
				{
					printf("%-5s %u %u %f %f %f %f %f %f\n", "hbond", atom1_typeid, atom2_typeid, reqm_hbond [atom1_typeid], reqm_hbond [atom2_typeid], opt_distance, delta_distance, atomic_distance, smoothed_distance);

				}
				else	//van der Waals
				{
					printf("%-5s %u %u %f %f %f %f %f %f\n", "vdw", atom1_typeid, atom2_typeid, reqm [atom1_typeid], reqm [atom2_typeid], opt_distance, delta_distance, atomic_distance, smoothed_distance);	
				}
			}
*/

675
			// Calculating van der Waals / hydrogen bond term
lvs's avatar
lvs committed
676
677
678
			priv_gradient_per_intracontributor += native_divide (-12*VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
									     native_powr(smoothed_distance/*atomic_distance*/, 13)
									    );
679

680
			if (intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
lvs's avatar
lvs committed
681
682
683
				priv_gradient_per_intracontributor += native_divide (10*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										     native_powr(smoothed_distance/*atomic_distance*/, 11)
										    );
684
685
			}
			else {	//van der Waals
lvs's avatar
lvs committed
686
687
688
				priv_gradient_per_intracontributor += native_divide (6*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										     native_powr(smoothed_distance/*atomic_distance*/, 7)
										    );
689
			}
690

691
692
			// Calculating electrostatic term
			// http://www.wolframalpha.com/input/?i=1%2F(x*(A%2B(B%2F(1%2BK*exp(-h*B*x)))))
Leonardo Solis's avatar
Leonardo Solis committed
693
			float upper = DIEL_A*native_powr(native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K, 2) + (DIEL_B)*native_exp(DIEL_B_TIMES_H*atomic_distance)*(DIEL_B_TIMES_H_TIMES_K*atomic_distance + native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K);
694
		
Leonardo Solis's avatar
Leonardo Solis committed
695
			float lower = native_powr(atomic_distance, 2) * native_powr(DIEL_A * (native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K) + DIEL_B * native_exp(DIEL_B_TIMES_H*atomic_distance), 2);
696

lvs's avatar
lvs committed
697
        		priv_gradient_per_intracontributor +=  -dockpars_coeff_elec * atom_charges_const[atom1_id] * atom_charges_const[atom2_id] * native_divide (upper, lower);
698

699
			// Calculating desolvation term
lvs's avatar
lvs committed
700
			priv_gradient_per_intracontributor += (
701
702
703
704
									       (dspars_S_const[atom1_typeid] + dockpars_qasp*fabs(atom_charges_const[atom1_id])) * dspars_V_const[atom2_typeid] +
							                       (dspars_S_const[atom2_typeid] + dockpars_qasp*fabs(atom_charges_const[atom2_id])) * dspars_V_const[atom1_typeid]
				        				      ) *
					                       			dockpars_coeff_desolv * -0.07716049382716049 * atomic_distance * native_exp(-0.038580246913580245*native_powr(atomic_distance, 2));
705

lvs's avatar
lvs committed
706
707
			// Decomposing "priv_gradient_per_intracontributor" 
			// into the contribution of each atom of the pair 
708
709
710
711
712
713
714
			float subx_div_dist = native_divide(subx, dist);
			float suby_div_dist = native_divide(suby, dist);
			float subz_div_dist = native_divide(subz, dist);

			float priv_intra_gradient_x = priv_gradient_per_intracontributor * subx_div_dist;
			float priv_intra_gradient_y = priv_gradient_per_intracontributor * suby_div_dist;
			float priv_intra_gradient_z = priv_gradient_per_intracontributor * subz_div_dist;
lvs's avatar
lvs committed
715
		
716
717
718
719
720
721
722
723
724
725
			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
			atomicSub_g_f(&gradient_intra_x[atom1_id], priv_intra_gradient_x);
			atomicSub_g_f(&gradient_intra_y[atom1_id], priv_intra_gradient_y);
			atomicSub_g_f(&gradient_intra_z[atom1_id], priv_intra_gradient_z);

			atomicAdd_g_f(&gradient_intra_x[atom2_id], priv_intra_gradient_x);
			atomicAdd_g_f(&gradient_intra_y[atom2_id], priv_intra_gradient_y);
			atomicAdd_g_f(&gradient_intra_z[atom2_id], priv_intra_gradient_z);
726
		}
727

728
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)
729

730
731
732
733
		//----------------------------------
		// eliminate unnecessary local storage
		//----------------------------------
/*
734
	barrier(CLK_LOCAL_MEM_FENCE);
735

736
	// Accumulating gradients from "gradient_per_intracontributor" for each each
737
738
739
740
741
742
743
744
745
	if (get_local_id(0) == 0) {
		for (uint contributor_counter = 0;
			  contributor_counter < dockpars_num_of_intraE_contributors;
			  contributor_counter ++) {

			// Getting atom IDs
			uint atom1_id = intraE_contributors_const[3*contributor_counter];
			uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

746
747
748
749
750
751
			// Calculating xyz distances in Angstroms of vector
			// that goes from "atom1_id"-to-"atom2_id"
			float subx = (calc_coords_x[atom2_id] - calc_coords_x[atom1_id]);
			float suby = (calc_coords_y[atom2_id] - calc_coords_y[atom1_id]);
			float subz = (calc_coords_z[atom2_id] - calc_coords_z[atom1_id]);
			float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
752

753
754
755
756
			float subx_div_dist = native_divide(subx, dist);
			float suby_div_dist = native_divide(suby, dist);
			float subz_div_dist = native_divide(subz, dist);

757
758
759
			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
760
761
762
			gradient_intra_x[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom1_id] -= gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subz_div_dist;
763

764
765
766
			gradient_intra_x[atom2_id] += gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom2_id] += gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom2_id] += gradient_per_intracontributor[contributor_counter] * subz_div_dist;
767
768

			//printf("%-20s %-10u %-5u %-5u %-10.8f\n", "grad_intracontrib", contributor_counter, atom1_id, atom2_id, gradient_per_intracontributor[contributor_counter]);
769
770
		}
	}
771
772
*/	

773
774
	barrier(CLK_LOCAL_MEM_FENCE);

775
776
777
778
	// Accumulating inter- and intramolecular gradients
	for (uint atom_cnt = get_local_id(0);
		  atom_cnt < dockpars_num_of_atoms;
		  atom_cnt+= NUM_OF_THREADS_PER_BLOCK) {
779
780
781
782
783
784

		// Grid gradients were calculated in the grid space,
		// so they have to be put back in Angstrom.

		// Intramolecular gradients were already in Angstrom,
		// so no scaling for them is required.
785
786
787
		gradient_inter_x[atom_cnt] = native_divide(gradient_inter_x[atom_cnt], dockpars_grid_spacing);
		gradient_inter_y[atom_cnt] = native_divide(gradient_inter_y[atom_cnt], dockpars_grid_spacing);
		gradient_inter_z[atom_cnt] = native_divide(gradient_inter_z[atom_cnt], dockpars_grid_spacing);
788

789
/*
790
791
792
		gradient_x[atom_cnt] = gradient_inter_x[atom_cnt] + gradient_intra_x[atom_cnt];
		gradient_y[atom_cnt] = gradient_inter_y[atom_cnt] + gradient_intra_y[atom_cnt];
		gradient_z[atom_cnt] = gradient_inter_z[atom_cnt] + gradient_intra_z[atom_cnt];
793
794
795
796
797
798
*/	
		gradient_inter_x[atom_cnt] += gradient_intra_x[atom_cnt];
		gradient_inter_y[atom_cnt] += gradient_intra_y[atom_cnt];
		gradient_inter_z[atom_cnt] += gradient_intra_z[atom_cnt];


799
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_grid", atom_cnt, gradient_inter_x[atom_cnt], gradient_inter_y[atom_cnt], gradient_inter_z[atom_cnt]);
800
801
802
803
804

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_intra", atom_cnt, gradient_intra_x[atom_cnt], gradient_intra_y[atom_cnt], gradient_intra_z[atom_cnt]);

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "calc_coords", atom_cnt, calc_coords_x[atom_cnt], calc_coords_y[atom_cnt], calc_coords_z[atom_cnt]);

805
806
	}

807
808
	barrier(CLK_LOCAL_MEM_FENCE);

809
	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
810
	// Obtaining translation-related gradients
811
812
813
814
815
	// ------------------------------------------
	if (get_local_id(0) == 0) {
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
816
/*
817
818
819
			gradient_genotype[0] += gradient_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_z[lig_atom_id]; // gradient for gene 2: gene z
820
821
822
823
*/
			gradient_genotype[0] += gradient_inter_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_inter_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_inter_z[lig_atom_id]; // gradient for gene 2: gene z
824
		}
825

826
827
828
829
830
831
832
833
834
		// Scaling gradient for translational genes as 
		// their corresponding gradients were calculated in the space 
		// where these genes are in Angstrom,
		// but OCLaDock translational genes are within in grids
		gradient_genotype[0] *= dockpars_grid_spacing;
		gradient_genotype[1] *= dockpars_grid_spacing;
		gradient_genotype[2] *= dockpars_grid_spacing;

		#if defined (DEBUG_GRAD_TRANSLATION_GENES)
835
/*
836
837
838
		printf("gradient_x:%f\n", gradient_genotype [0]);
		printf("gradient_y:%f\n", gradient_genotype [1]);
		printf("gradient_z:%f\n", gradient_genotype [2]);
839
840
841
842
*/
		printf("gradient_inter_x:%f\n", gradient_genotype [0]);
		printf("gradient_inter_y:%f\n", gradient_genotype [1]);
		printf("gradient_inter_z:%f\n", gradient_genotype [2]);
843
		#endif
844
845
846
	}

	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
847
848
	// Obtaining rotation-related gradients
	// ------------------------------------------ 
849
850
851
852
853
854
855
856
857
858
859
				
	// Transform gradients_inter_{x|y|z} 
	// into local_gradients[i] (with four quaternion genes)
	// Derived from autodockdev/motions.py/forces_to_delta_genes()

	// Transform local_gradients[i] (with four quaternion genes)
	// into local_gradients[i] (with three Shoemake genes)
	// Derived from autodockdev/motions.py/_get_cube3_gradient()
	// ------------------------------------------
	if (get_local_id(0) == 1) {

860
861
862
863
		float3 torque_rot;
		torque_rot.x = 0.0f;
		torque_rot.y = 0.0f;
		torque_rot.z = 0.0f;
864

865
		#if defined (DEBUG_GRAD_ROTATION_GENES)
866
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "initial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
867
		#endif
868

869
		// Declaring a variable to hold the center of rotation 
870
871
		// In getparameters.cpp, it indicates 
		// translation genes are in grid spacing (instead of Angstroms)
Leonardo Solis's avatar
Leonardo Solis committed
872
		float3 about;
873
874
875
		about.x = genotype[0];
		about.y = genotype[1];
		about.z = genotype[2];
876
	
877
878
879
		// Temporal variable to calculate translation differences.
		// They are converted back to Angstroms here
		float3 r;
880
			
881
882
883
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
Leonardo Solis's avatar
Leonardo Solis committed
884
885
886
			r.x = (calc_coords_x[lig_atom_id] - about.x) * dockpars_grid_spacing; 
			r.y = (calc_coords_y[lig_atom_id] - about.y) * dockpars_grid_spacing;  
			r.z = (calc_coords_z[lig_atom_id] - about.z) * dockpars_grid_spacing; 
887

888
			float3 force;
889
/*
890
891
892
			force.x	= gradient_x[lig_atom_id];
			force.y	= gradient_y[lig_atom_id]; 
			force.z	= gradient_z[lig_atom_id];
893
894
895
896
*/
			force.x	= gradient_inter_x[lig_atom_id];
			force.y	= gradient_inter_y[lig_atom_id]; 
			force.z	= gradient_inter_z[lig_atom_id];
897

898
			torque_rot += cross(r, force);
899
900

			#if defined (DEBUG_GRAD_ROTATION_GENES)
901
902
903
904
905
			printf("%-20s %-10u\n", "contrib. of atom-id: ", lig_atom_id);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "r             : ", r.x, r.y, r.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "force         : ", force.x, force.y, force.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "partial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
			printf("\n");
906
			#endif
907
		}
908

909
		#if defined (DEBUG_GRAD_ROTATION_GENES)
910
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "final torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
911
		#endif
912
913
914

		// Derived from rotation.py/axisangle_to_q()
		// genes[3:7] = rotation.axisangle_to_q(torque, rad)
915
		float torque_length = fast_length(torque_rot);
916
917
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
918
		printf("%-20s %-10.5f\n", "torque length: ", torque_length);
919
		#endif
920

921
		/*
922
		// Infinitesimal rotation in radians
923
		const float infinitesimal_radian = 1E-5;
924
		*/
925
926
927
928

		// Finding the quaternion that performs
		// the infinitesimal rotation around torque axis
		float4 quat_torque;
929
930
931
932
933
934
935
936
937
938
939
		#if 0
		quat_torque.w = native_cos(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.x = fast_normalize(torque_rot).x * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.y = fast_normalize(torque_rot).y * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		quat_torque.z = fast_normalize(torque_rot).z * native_sin(HALF_INFINITESIMAL_RADIAN/*infinitesimal_radian*0.5f*/);
		#endif

		quat_torque.w = COS_HALF_INFINITESIMAL_RADIAN;
		quat_torque.x = fast_normalize(torque_rot).x * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.y = fast_normalize(torque_rot).y * SIN_HALF_INFINITESIMAL_RADIAN;
		quat_torque.z = fast_normalize(torque_rot).z * SIN_HALF_INFINITESIMAL_RADIAN;
940
941

		#if defined (DEBUG_GRAD_ROTATION_GENES)
942
		printf("%-20s %-10.5f %-10.5f %-10.5f %-10.5f\n", "quat_torque (w,x,y,z): ", quat_torque.w, quat_torque.x, quat_torque.y, quat_torque.z);
943
		#endif
944

Leonardo Solis's avatar
Leonardo Solis committed
945
		// Converting quaternion gradients into Shoemake gradients 
946
947
		// Derived from autodockdev/motion.py/_get_cube3_gradient

948
		// This is where we are in Shoemake space
949
950
951
952
		float current_u1, current_u2, current_u3;
		current_u1 = genotype[3]; // check very initial input Shoemake genes
		current_u2 = genotype[4];
		current_u3 = genotype[5];
953
954
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
955
		printf("%-30s %-10.5f %-10.5f %-10.5f\n", "current_u (1,2,3): ", genotype[3], genotype[4], genotype[5]);
956
		#endif		
957

Leonardo Solis's avatar
Leonardo Solis committed
958
		// This is where we are in quaternion space
959
		// current_q = cube3_to_quaternion(current_u)
960
961
962
963
964
		float4 current_q;
		current_q.w = native_sqrt(1-current_u1) * native_sin(PI_TIMES_2*current_u2);
		current_q.x = native_sqrt(1-current_u1) * native_cos(PI_TIMES_2*current_u2);
		current_q.y = native_sqrt(current_u1)   * native_sin(PI_TIMES_2*current_u3);
		current_q.z = native_sqrt(current_u1)   * native_cos(PI_TIMES_2*current_u3);
965
966

		#if defined (DEBUG_GRAD_ROTATION_GENES)
967
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "current_q (w,x,y,z): ", current_q.w, current_q.x, current_q.y, current_q.z);
968
		#endif
969

Leonardo Solis's avatar
Leonardo Solis committed
970
		// This is where we want to be in quaternion space
971
		float4 target_q;
972
973
974
975

		// target_q = rotation.q_mult(q, current_q)
		// Derived from autodockdev/rotation.py/q_mult()
		// In our terms means q_mult(quat_{w|x|y|z}, current_q{w|x|y|z})
976
977
978
979
		target_q.w = quat_torque.w*current_q.w - quat_torque.x*current_q.x - quat_torque.y*current_q.y - quat_torque.z*current_q.z;// w
		target_q.x = quat_torque.w*current_q.x + quat_torque.x*current_q.w + quat_torque.y*current_q.z - quat_torque.z*current_q.y;// x
		target_q.y = quat_torque.w*current_q.y + quat_torque.y*current_q.w + quat_torque.z*current_q.x - quat_torque.x*current_q.z;// y
		target_q.z = quat_torque.w*current_q.z + quat_torque.z*current_q.w + quat_torque.x*current_q.y - quat_torque.y*current_q.x;// z
980
		#if defined (DEBUG_GRAD_ROTATION_GENES)
981
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "target_q (w,x,y,z): ", target_q.w, target_q.x, target_q.y, target_q.z);
982
		#endif
983

984
		// This is where we want to be in Shoemake space
985
986
987
988
989
		float target_u1, target_u2, target_u3;

		// target_u = quaternion_to_cube3(target_q)
		// Derived from autodockdev/motions.py/quaternion_to_cube3()
		// In our terms means quaternion_to_cube3(target_q{w|x|y|z})
990
991
992
		target_u1 = target_q.y*target_q.y + target_q.z*target_q.z;
		target_u2 = atan2(target_q.w, target_q.x);
		target_u3 = atan2(target_q.y, target_q.z);
993
		
994
995
996
997
998
999
		if (target_u2 < 0.0f)       { target_u2 += PI_TIMES_2; }
		if (target_u2 > PI_TIMES_2) { target_u2 -= PI_TIMES_2; }
		if (target_u3 < 0.0f) 	    { target_u3 += PI_TIMES_2; }
		if (target_u3 > PI_TIMES_2) { target_u3 -= PI_TIMES_2; }

		#if defined (DEBUG_GRAD_ROTATION_GENES)
1000
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "target_u (1,2,3) - after mapping: ", target_u1, target_u2, target_u3);