calcgradient.cl 41.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*

OCLADock, an OpenCL implementation of AutoDock 4.2 running a Lamarckian Genetic Algorithm
Copyright (C) 2017 TU Darmstadt, Embedded Systems and Applications Group, Germany. All rights reserved.

AutoDock is a Trade Mark of the Scripps Research Institute.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

*/

/*
#include "calcenergy_basic.h"
*/
// All related pragmas are in defines.h (accesible by host and device code)

Leonardo Solis's avatar
Leonardo Solis committed
29
30
31
32
33
34
35
36

// The GPU device function calculates the energy's gradient (forces or derivatives) 
// of the entity described by genotype, dockpars and the ligand-data
// arrays in constant memory and returns it in the "gradient_genotype" parameter. 
// The parameter "run_id" has to be equal to the ID of the run 
// whose population includes the current entity (which can be determined with get_group_id(0)), 
// since this determines which reference orientation should be used.

37
38
39

//#define DEBUG_GRAD_TRANSLATION_GENES
//#define DEBUG_GRAD_ROTATION_GENES
Leonardo Solis's avatar
Leonardo Solis committed
40
//#define DEBUG_GRAD_TORSION_GENES
41
//#define DEBUG_ENERGY_KERNEL5
42

43
44
45
46
47
48
49
50
51
52
53
54
55
void gpu_calc_gradient(	    
				int    dockpars_rotbondlist_length,
				char   dockpars_num_of_atoms,
			    	char   dockpars_gridsize_x,
			    	char   dockpars_gridsize_y,
			    	char   dockpars_gridsize_z,
		 __global const float* restrict dockpars_fgrids, // This is too large to be allocated in __constant 
		            	char   dockpars_num_of_atypes,
		            	int    dockpars_num_of_intraE_contributors,
			    	float  dockpars_grid_spacing,
			    	float  dockpars_coeff_elec,
			    	float  dockpars_qasp,
			    	float  dockpars_coeff_desolv,
56

Leonardo Solis's avatar
Leonardo Solis committed
57
58
59
60
				// Some OpenCL compilers don't allow declaring 
				// local variables within non-kernel functions.
				// These local variables must be declared in a kernel, 
				// and then passed to non-kernel functions.
61
		    	__local float* genotype,
62
			__local float* energy,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
		    	__local int*   run_id,

		    	__local float* calc_coords_x,
		    	__local float* calc_coords_y,
		    	__local float* calc_coords_z,

	             __constant float* atom_charges_const,
                     __constant char*  atom_types_const,
                     __constant char*  intraE_contributors_const,
                     __constant float* VWpars_AC_const,
                     __constant float* VWpars_BD_const,
                     __constant float* dspars_S_const,
                     __constant float* dspars_V_const,
                     __constant int*   rotlist_const,
                     __constant float* ref_coords_x_const,
                     __constant float* ref_coords_y_const,
                     __constant float* ref_coords_z_const,
                     __constant float* rotbonds_moving_vectors_const,
                     __constant float* rotbonds_unit_vectors_const,
82
83
84
85
                     __constant float* ref_orientation_quats_const,
		     __constant int*   rotbonds_const,
		     __constant int*   rotbonds_atoms_const,
		     __constant int*   num_rotating_atoms_per_rotbond_const
86
87
88
89
90
91
92
93
94
95
96
97

		    // Gradient-related arguments
		    // Calculate gradients (forces) for intermolecular energy
		    // Derived from autodockdev/maps.py
		    // "is_enabled_gradient_calc": enables gradient calculation.
		    // In Genetic-Generation: no need for gradients
		    // In Gradient-Minimizer: must calculate gradients
			,
			    int    dockpars_num_of_genes,
	    	    __local float* gradient_inter_x,
	            __local float* gradient_inter_y,
	            __local float* gradient_inter_z,
98
99
100
		    __local float* gradient_intra_x,
		    __local float* gradient_intra_y,
		    __local float* gradient_intra_z,
101
102
103
		    __local float* gradient_x,
		    __local float* gradient_y,
		    __local float* gradient_z,
104
	            __local float* gradient_per_intracontributor,
105
106
107
		    __local float* gradient_genotype			
)
{
108
	// Initializing gradients (forces) 
109
110
111
112
	// Derived from autodockdev/maps.py
	for (uint atom_id = get_local_id(0);
		  atom_id < dockpars_num_of_atoms;
		  atom_id+= NUM_OF_THREADS_PER_BLOCK) {
113
		// Intermolecular gradients
114
115
116
		gradient_inter_x[atom_id] = 0.0f;
		gradient_inter_y[atom_id] = 0.0f;
		gradient_inter_z[atom_id] = 0.0f;
117
118
119
120
121
122
		// Intramolecular gradients
		gradient_intra_x[atom_id] = 0.0f;
		gradient_intra_y[atom_id] = 0.0f;
		gradient_intra_z[atom_id] = 0.0f;
	}

Leonardo Solis's avatar
Leonardo Solis committed
123
	// Initializing gradients per intramolecular contributor pairs 
124
125
126
127
	for (uint intracontrib_atompair_id = get_local_id(0);
		  intracontrib_atompair_id < dockpars_num_of_intraE_contributors;
		  intracontrib_atompair_id+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_per_intracontributor[intracontrib_atompair_id] = 0.0f;
128
129
	}

Leonardo Solis's avatar
Leonardo Solis committed
130
131
132
133
134
135
136
137
138
	// Initializing gradient genotypes
	for (uint gene_cnt = get_local_id(0);
		  gene_cnt < dockpars_num_of_genes;
		  gene_cnt+= NUM_OF_THREADS_PER_BLOCK) {
		gradient_genotype[gene_cnt] = 0.0f;
	}

	barrier(CLK_LOCAL_MEM_FENCE);

139
140
141
142
143
144
	uchar g1 = dockpars_gridsize_x;
	uint  g2 = dockpars_gridsize_x * dockpars_gridsize_y;
  	uint  g3 = dockpars_gridsize_x * dockpars_gridsize_y * dockpars_gridsize_z;


	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
145
	// CALCULATING ATOMIC POSITIONS AFTER ROTATIONS
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
	// ================================================
	for (uint rotation_counter = get_local_id(0);
	          rotation_counter < dockpars_rotbondlist_length;
	          rotation_counter+=NUM_OF_THREADS_PER_BLOCK)
	{
		int rotation_list_element = rotlist_const[rotation_counter];

		if ((rotation_list_element & RLIST_DUMMY_MASK) == 0)	// If not dummy rotation
		{
			uint atom_id = rotation_list_element & RLIST_ATOMID_MASK;

			// Capturing atom coordinates
			float atom_to_rotate[3];

			if ((rotation_list_element & RLIST_FIRSTROT_MASK) != 0)	// If first rotation of this atom
			{
				atom_to_rotate[0] = ref_coords_x_const[atom_id];
				atom_to_rotate[1] = ref_coords_y_const[atom_id];
				atom_to_rotate[2] = ref_coords_z_const[atom_id];
			}
			else
			{
				atom_to_rotate[0] = calc_coords_x[atom_id];
				atom_to_rotate[1] = calc_coords_y[atom_id];
				atom_to_rotate[2] = calc_coords_z[atom_id];
			}

			// Capturing rotation vectors and angle
			float rotation_movingvec[3];

			float quatrot_left_x, quatrot_left_y, quatrot_left_z, quatrot_left_q;
			float quatrot_temp_x, quatrot_temp_y, quatrot_temp_z, quatrot_temp_q;

			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation
			{
Leonardo Solis's avatar
Leonardo Solis committed
181
				// Rotational genes in the Shoemake space are expressed in radians
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
				float u1 = genotype[3];
				float u2 = genotype[4];
				float u3 = genotype[5];

				// u1, u2, u3 should be within their valid range of [0,1]
				quatrot_left_q = native_sqrt(1 - u1) * native_sin(PI_TIMES_2*u2); 
				quatrot_left_x = native_sqrt(1 - u1) * native_cos(PI_TIMES_2*u2);
				quatrot_left_y = native_sqrt(u1)     * native_sin(PI_TIMES_2*u3);
				quatrot_left_z = native_sqrt(u1)     * native_cos(PI_TIMES_2*u3);

				rotation_movingvec[0] = genotype[0];
				rotation_movingvec[1] = genotype[1];
				rotation_movingvec[2] = genotype[2];
			}
			else	// If rotating around rotatable bond
			{
				uint rotbond_id = (rotation_list_element & RLIST_RBONDID_MASK) >> RLIST_RBONDID_SHIFT;

				float rotation_unitvec[3];
				rotation_unitvec[0] = rotbonds_unit_vectors_const[3*rotbond_id];
				rotation_unitvec[1] = rotbonds_unit_vectors_const[3*rotbond_id+1];
				rotation_unitvec[2] = rotbonds_unit_vectors_const[3*rotbond_id+2];
				float rotation_angle = genotype[6+rotbond_id]*DEG_TO_RAD;

				rotation_movingvec[0] = rotbonds_moving_vectors_const[3*rotbond_id];
				rotation_movingvec[1] = rotbonds_moving_vectors_const[3*rotbond_id+1];
				rotation_movingvec[2] = rotbonds_moving_vectors_const[3*rotbond_id+2];

				// Performing additionally the first movement which 
				// is needed only if rotating around rotatable bond
				atom_to_rotate[0] -= rotation_movingvec[0];
				atom_to_rotate[1] -= rotation_movingvec[1];
				atom_to_rotate[2] -= rotation_movingvec[2];

				// Transforming torsion angles into quaternions
				rotation_angle  = native_divide(rotation_angle, 2.0f);
				float sin_angle = native_sin(rotation_angle);
				quatrot_left_q  = native_cos(rotation_angle);
				quatrot_left_x  = sin_angle*rotation_unitvec[0];
				quatrot_left_y  = sin_angle*rotation_unitvec[1];
				quatrot_left_z  = sin_angle*rotation_unitvec[2];
			}

			// Performing rotation
			if ((rotation_list_element & RLIST_GENROT_MASK) != 0)	// If general rotation,
										// two rotations should be performed
										// (multiplying the quaternions)
			{
				// Calculating quatrot_left*ref_orientation_quats_const,
				// which means that reference orientation rotation is the first
				quatrot_temp_q = quatrot_left_q;
				quatrot_temp_x = quatrot_left_x;
				quatrot_temp_y = quatrot_left_y;
				quatrot_temp_z = quatrot_left_z;

				quatrot_left_q = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)]-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+1]-
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+2]-
						 quatrot_temp_z*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_x = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+1]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_x+
						 quatrot_temp_y*ref_orientation_quats_const[4*(*run_id)+3]-
						 ref_orientation_quats_const[4*(*run_id)+2]*quatrot_temp_z;
				quatrot_left_y = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+2]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_y+
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_z-
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+3];
				quatrot_left_z = quatrot_temp_q*ref_orientation_quats_const[4*(*run_id)+3]+
						 ref_orientation_quats_const[4*(*run_id)]*quatrot_temp_z+
						 quatrot_temp_x*ref_orientation_quats_const[4*(*run_id)+2]-
						 ref_orientation_quats_const[4*(*run_id)+1]*quatrot_temp_y;
			}

			quatrot_temp_q = 0 -
					 quatrot_left_x*atom_to_rotate [0] -
					 quatrot_left_y*atom_to_rotate [1] -
					 quatrot_left_z*atom_to_rotate [2];
			quatrot_temp_x = quatrot_left_q*atom_to_rotate [0] +
					 quatrot_left_y*atom_to_rotate [2] -
					 quatrot_left_z*atom_to_rotate [1];
			quatrot_temp_y = quatrot_left_q*atom_to_rotate [1] -
					 quatrot_left_x*atom_to_rotate [2] +
					 quatrot_left_z*atom_to_rotate [0];
			quatrot_temp_z = quatrot_left_q*atom_to_rotate [2] +
					 quatrot_left_x*atom_to_rotate [1] -
					 quatrot_left_y*atom_to_rotate [0];

			atom_to_rotate [0] = 0 -
					  quatrot_temp_q*quatrot_left_x +
					  quatrot_temp_x*quatrot_left_q -
					  quatrot_temp_y*quatrot_left_z +
					  quatrot_temp_z*quatrot_left_y;
			atom_to_rotate [1] = 0 -
					  quatrot_temp_q*quatrot_left_y +
					  quatrot_temp_x*quatrot_left_z +
					  quatrot_temp_y*quatrot_left_q -
					  quatrot_temp_z*quatrot_left_x;
			atom_to_rotate [2] = 0 -
					  quatrot_temp_q*quatrot_left_z -
					  quatrot_temp_x*quatrot_left_y +
					  quatrot_temp_y*quatrot_left_x +
					  quatrot_temp_z*quatrot_left_q;

			// Performing final movement and storing values
			calc_coords_x[atom_id] = atom_to_rotate [0] + rotation_movingvec[0];
			calc_coords_y[atom_id] = atom_to_rotate [1] + rotation_movingvec[1];
			calc_coords_z[atom_id] = atom_to_rotate [2] + rotation_movingvec[2];

		} // End if-statement not dummy rotation

		barrier(CLK_LOCAL_MEM_FENCE);

	} // End rotation_counter for-loop

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
297
	// CALCULATING INTERMOLECULAR GRADIENTS
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
	// ================================================
	for (uint atom_id = get_local_id(0);
	          atom_id < dockpars_num_of_atoms;
	          atom_id+= NUM_OF_THREADS_PER_BLOCK)
	{
		uint atom_typeid = atom_types_const[atom_id];
		float x = calc_coords_x[atom_id];
		float y = calc_coords_y[atom_id];
		float z = calc_coords_z[atom_id];
		float q = atom_charges_const[atom_id];

		if ((x < 0) || (y < 0) || (z < 0) || (x >= dockpars_gridsize_x-1)
				                  || (y >= dockpars_gridsize_y-1)
						  || (z >= dockpars_gridsize_z-1)){
			
			// Setting gradients (forces) penalties.
			// These are valid as long as they are high
			gradient_inter_x[atom_id] += 16777216.0f;
			gradient_inter_y[atom_id] += 16777216.0f;
			gradient_inter_z[atom_id] += 16777216.0f;
		}
		else
		{
			// Getting coordinates
			int x_low  = (int)floor(x); 
			int y_low  = (int)floor(y); 
			int z_low  = (int)floor(z);
			int x_high = (int)ceil(x); 
			int y_high = (int)ceil(y); 
			int z_high = (int)ceil(z);
			float dx = x - x_low; 
			float dy = y - y_low; 
			float dz = z - z_low;

332
333
			//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "dx,dy,dz", atom_id, dx, dy, dz);

334
335
336
337
338
339
340
341
342
343
344
			// Calculating interpolation weights
			float weights[2][2][2];
			weights [0][0][0] = (1-dx)*(1-dy)*(1-dz);
			weights [1][0][0] = dx*(1-dy)*(1-dz);
			weights [0][1][0] = (1-dx)*dy*(1-dz);
			weights [1][1][0] = dx*dy*(1-dz);
			weights [0][0][1] = (1-dx)*(1-dy)*dz;
			weights [1][0][1] = dx*(1-dy)*dz;
			weights [0][1][1] = (1-dx)*dy*dz;
			weights [1][1][1] = dx*dy*dz;

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
			// Capturing affinity values
			uint ylow_times_g1  = y_low*g1;
			uint yhigh_times_g1 = y_high*g1;
		  	uint zlow_times_g2  = z_low*g2;
			uint zhigh_times_g2 = z_high*g2;

			// Grid offset
			uint offset_cube_000 = x_low  + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_100 = x_high + ylow_times_g1  + zlow_times_g2;
			uint offset_cube_010 = x_low  + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_110 = x_high + yhigh_times_g1 + zlow_times_g2;
			uint offset_cube_001 = x_low  + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_101 = x_high + ylow_times_g1  + zhigh_times_g2;
			uint offset_cube_011 = x_low  + yhigh_times_g1 + zhigh_times_g2;
			uint offset_cube_111 = x_high + yhigh_times_g1 + zhigh_times_g2;

			uint mul_tmp = atom_typeid*g3;

			float cube[2][2][2];
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
		        cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		        cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
                        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
                        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

			// -------------------------------------------------------------------
			// Deltas dx, dy, dz are already normalized 
			// (by host/src/getparameters.cpp) in OCLaDock.
			// The correspondance between vertices in xyz axes is:
			// 0, 1, 2, 3, 4, 5, 6, 7  and  000, 100, 010, 001, 101, 110, 011, 111
			// -------------------------------------------------------------------
			/*
			    deltas: (x-x0)/(x1-x0), (y-y0...
			    vertices: (000, 100, 010, 001, 101, 110, 011, 111)        

				  Z
				  '
				  3 - - - - 6
				 /.        /|
				4 - - - - 7 |
				| '       | |
				| 0 - - - + 2 -- Y
				'/        |/
				1 - - - - 5
			       /
			      X
			*/

			// Intermediate values for vectors in x-direction
			float x10, x52, x43, x76;
			float vx_z0, vx_z1;

			// Intermediate values for vectors in y-direction
			float y20, y51, y63, y74;
			float vy_z0, vy_z1;

			// Intermediate values for vectors in z-direction
			float z30, z41, z62, z75;
			float vz_y0, vz_y1;

			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "atype" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

Leonardo Solis's avatar
Leonardo Solis committed
414
			// Vector in x-direction
415
416
417
418
419
420
421
422
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
			gradient_inter_x[atom_id] += (1 - dz) * vx_z0 + dz * vx_z1;

Leonardo Solis's avatar
Leonardo Solis committed
423
			// Vector in y-direction
424
425
426
427
428
429
430
431
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
			gradient_inter_y[atom_id] += (1 - dz) * vy_z0 + dz * vy_z1;

Leonardo Solis's avatar
Leonardo Solis committed
432
			// Vectors in z-direction
433
434
435
436
437
438
439
440
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
			gradient_inter_z[atom_id] += (1 - dy) * vz_y0 + dy * vz_y1;

441
442
			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "atom aff", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
			// -------------------------------------------------------------------
			// Calculating gradients (forces) corresponding to 
			// "elec" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing electrostatic values
			atom_typeid = dockpars_num_of_atypes;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
		       	cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
		        cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
		        cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
		        cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
462
			// Vector in x-direction
463
464
465
466
467
468
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
469
			gradient_inter_x[atom_id] += q * ((1 - dz) * vx_z0 + dz * vx_z1);
470

Leonardo Solis's avatar
Leonardo Solis committed
471
			// Vector in y-direction
472
473
474
475
476
477
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
478
			gradient_inter_y[atom_id] += q *((1 - dz) * vy_z0 + dz * vy_z1);
479

Leonardo Solis's avatar
Leonardo Solis committed
480
			// Vectors in z-direction
481
482
483
484
485
486
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
487
488
489
			gradient_inter_z[atom_id] += q *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "elec", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
490
491

			// -------------------------------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
492
			// Calculating gradients (forces) corresponding to 
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
			// "dsol" intermolecular energy
			// Derived from autodockdev/maps.py
			// -------------------------------------------------------------------

			// Capturing desolvation values
			atom_typeid = dockpars_num_of_atypes+1;

			mul_tmp = atom_typeid*g3;
			cube [0][0][0] = *(dockpars_fgrids + offset_cube_000 + mul_tmp);
			cube [1][0][0] = *(dockpars_fgrids + offset_cube_100 + mul_tmp);
      			cube [0][1][0] = *(dockpars_fgrids + offset_cube_010 + mul_tmp);
      			cube [1][1][0] = *(dockpars_fgrids + offset_cube_110 + mul_tmp);
      			cube [0][0][1] = *(dockpars_fgrids + offset_cube_001 + mul_tmp);
      			cube [1][0][1] = *(dockpars_fgrids + offset_cube_101 + mul_tmp);
      			cube [0][1][1] = *(dockpars_fgrids + offset_cube_011 + mul_tmp);
      			cube [1][1][1] = *(dockpars_fgrids + offset_cube_111 + mul_tmp);

Leonardo Solis's avatar
Leonardo Solis committed
510
			// Vector in x-direction
511
512
513
514
515
516
			x10 = cube [1][0][0] - cube [0][0][0]; // z = 0
			x52 = cube [1][1][0] - cube [0][1][0]; // z = 0
			x43 = cube [1][0][1] - cube [0][0][1]; // z = 1
			x76 = cube [1][1][1] - cube [0][1][1]; // z = 1
			vx_z0 = (1 - dy) * x10 + dy * x52;     // z = 0
			vx_z1 = (1 - dy) * x43 + dy * x76;     // z = 1
517
			gradient_inter_x[atom_id] += fabs(q) * ((1 - dz) * vx_z0 + dz * vx_z1);
518

Leonardo Solis's avatar
Leonardo Solis committed
519
			// Vector in y-direction
520
521
522
523
524
525
			y20 = cube[0][1][0] - cube [0][0][0];	// z = 0
			y51 = cube[1][1][0] - cube [1][0][0];	// z = 0
			y63 = cube[0][1][1] - cube [0][0][1];	// z = 1
			y74 = cube[1][1][1] - cube [1][0][1];	// z = 1
			vy_z0 = (1 - dx) * y20 + dx * y51;	// z = 0
			vy_z1 = (1 - dx) * y63 + dx * y74;	// z = 1
526
			gradient_inter_y[atom_id] += fabs(q) *((1 - dz) * vy_z0 + dz * vy_z1);
527

Leonardo Solis's avatar
Leonardo Solis committed
528
			// Vectors in z-direction
529
530
531
532
533
534
			z30 = cube [0][0][1] - cube [0][0][0];	// y = 0
			z41 = cube [1][0][1] - cube [1][0][0];	// y = 0
			z62 = cube [0][1][1] - cube [0][1][0];	// y = 1 
			z75 = cube [1][1][1] - cube [1][1][0];	// y = 1
			vz_y0 = (1 - dx) * z30 + dx * z41;	// y = 0
			vz_y1 = (1 - dx) * z62 + dx * z75;	// y = 1
535
536
537
			gradient_inter_z[atom_id] += fabs(q) *((1 - dy) * vz_y0 + dy * vz_y1);

			//printf("%-15s %-3u %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f %-10.8f\n", "desol", atom_id, vx_z0, vx_z1, vy_z0, vy_z1, vz_y0, vz_y1);
538
539
540
541
542
			// -------------------------------------------------------------------
		}

	} // End atom_id for-loop (INTERMOLECULAR ENERGY)

543
544
545
546
	// Inter- and intra-molecular energy calculation
	// are independent from each other, so NO barrier is needed here.
  	// As these two require different operations,
	// they can be executed only sequentially on the GPU.
547
548

	// ================================================
Leonardo Solis's avatar
Leonardo Solis committed
549
	// CALCULATING INTRAMOLECULAR GRADIENTS
550
551
552
	// ================================================
	for (uint contributor_counter = get_local_id(0);
	          contributor_counter < dockpars_num_of_intraE_contributors;
Leonardo Solis's avatar
Leonardo Solis committed
553
	          contributor_counter+= NUM_OF_THREADS_PER_BLOCK)
554
	{
555
		// Getting atom IDs
556
557
		uint atom1_id = intraE_contributors_const[3*contributor_counter];
		uint atom2_id = intraE_contributors_const[3*contributor_counter+1];
558
559
		//printf ("%-5u %-5u %-5u\n", contributor_counter, atom1_id, atom2_id);
		
560

Leonardo Solis's avatar
Leonardo Solis committed
561
562
563
564
565
		// Calculating vector components of vector going
		// from first atom's to second atom's coordinates
		float subx = calc_coords_x[atom1_id] - calc_coords_x[atom2_id];
		float suby = calc_coords_y[atom1_id] - calc_coords_y[atom2_id];
		float subz = calc_coords_z[atom1_id] - calc_coords_z[atom2_id];
566

567
		// Calculating atomic distance
568
569
570
571
572
		float atomic_distance = native_sqrt(subx*subx + suby*suby + subz*subz)*dockpars_grid_spacing;

		if (atomic_distance < 1.0f)
			atomic_distance = 1.0f;

573
		// Calculating gradient contributions
574
575
576
577
578
579
		if ((atomic_distance < 8.0f) && (atomic_distance < 20.48f))
		{
			// Getting type IDs
			uint atom1_typeid = atom_types_const[atom1_id];
			uint atom2_typeid = atom_types_const[atom2_id];

580
581
582
583
			// Calculating van der Waals / hydrogen bond term
			gradient_per_intracontributor[contributor_counter] += native_divide (-12*VWpars_AC_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
									                     native_powr(atomic_distance, 13)
									       		    );
584

585
586
587
			if (intraE_contributors_const[3*contributor_counter+2] == 1) {	//H-bond
				gradient_per_intracontributor[contributor_counter] += native_divide (10*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										                     native_powr(atomic_distance, 11)
588
												    );
589
590
591
592
593
594
			}
			else {	//van der Waals
				gradient_per_intracontributor[contributor_counter] += native_divide (6*VWpars_BD_const[atom1_typeid * dockpars_num_of_atypes+atom2_typeid],
										                     native_powr(atomic_distance, 7)
										                    );
			}
595

596
597
			// Calculating electrostatic term
			// http://www.wolframalpha.com/input/?i=1%2F(x*(A%2B(B%2F(1%2BK*exp(-h*B*x)))))
Leonardo Solis's avatar
Leonardo Solis committed
598
			float upper = DIEL_A*native_powr(native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K, 2) + (DIEL_B)*native_exp(DIEL_B_TIMES_H*atomic_distance)*(DIEL_B_TIMES_H_TIMES_K*atomic_distance + native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K);
599
		
Leonardo Solis's avatar
Leonardo Solis committed
600
			float lower = native_powr(atomic_distance, 2) * native_powr(DIEL_A * (native_exp(DIEL_B_TIMES_H*atomic_distance) + DIEL_K) + DIEL_B * native_exp(DIEL_B_TIMES_H*atomic_distance), 2);
601

Leonardo Solis's avatar
Leonardo Solis committed
602
        		gradient_per_intracontributor[contributor_counter] +=  -dockpars_coeff_elec * atom_charges_const[atom1_id] * atom_charges_const[atom2_id] * native_divide (upper, lower);
603

604
605
606
607
608
609
			// Calculating desolvation term
			gradient_per_intracontributor[contributor_counter] += (
									       (dspars_S_const[atom1_typeid] + dockpars_qasp*fabs(atom_charges_const[atom1_id])) * dspars_V_const[atom2_typeid] +
							                       (dspars_S_const[atom2_typeid] + dockpars_qasp*fabs(atom_charges_const[atom2_id])) * dspars_V_const[atom1_typeid]
				        				      ) *
					                       			dockpars_coeff_desolv * -0.07716049382716049 * atomic_distance * native_exp(-0.038580246913580245*native_powr(atomic_distance, 2));
610

611
		}
612

613
	} // End contributor_counter for-loop (INTRAMOLECULAR ENERGY)
614

615
	barrier(CLK_LOCAL_MEM_FENCE);
616

617
	// Accumulating gradients from "gradient_per_intracontributor" for each each
618
619
620
621
622
623
624
625
626
	if (get_local_id(0) == 0) {
		for (uint contributor_counter = 0;
			  contributor_counter < dockpars_num_of_intraE_contributors;
			  contributor_counter ++) {

			// Getting atom IDs
			uint atom1_id = intraE_contributors_const[3*contributor_counter];
			uint atom2_id = intraE_contributors_const[3*contributor_counter+1];

627
628
629
630
631
632
			// Calculating xyz distances in Angstroms of vector
			// that goes from "atom1_id"-to-"atom2_id"
			float subx = (calc_coords_x[atom2_id] - calc_coords_x[atom1_id]);
			float suby = (calc_coords_y[atom2_id] - calc_coords_y[atom1_id]);
			float subz = (calc_coords_z[atom2_id] - calc_coords_z[atom1_id]);
			float dist = native_sqrt(subx*subx + suby*suby + subz*subz);
633

634
635
636
637
			float subx_div_dist = native_divide(subx, dist);
			float suby_div_dist = native_divide(suby, dist);
			float subz_div_dist = native_divide(subz, dist);

638
639
640
			// Calculating gradients in xyz components.
			// Gradients for both atoms in a single contributor pair
			// have the same magnitude, but opposite directions
641
642
643
			gradient_intra_x[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom1_id] -= gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom1_id] -= gradient_per_intracontributor[contributor_counter] * subz_div_dist;
644

645
646
647
			gradient_intra_x[atom2_id] += gradient_per_intracontributor[contributor_counter] * subx_div_dist;
			gradient_intra_y[atom2_id] += gradient_per_intracontributor[contributor_counter] * suby_div_dist;
			gradient_intra_z[atom2_id] += gradient_per_intracontributor[contributor_counter] * subz_div_dist;
648
649

			//printf("%-20s %-10u %-5u %-5u %-10.8f\n", "grad_intracontrib", contributor_counter, atom1_id, atom2_id, gradient_per_intracontributor[contributor_counter]);
650
651
652
		}
	}
	
653
654
655

	barrier(CLK_LOCAL_MEM_FENCE);

656
657
658
659
	// Accumulating inter- and intramolecular gradients
	for (uint atom_cnt = get_local_id(0);
		  atom_cnt < dockpars_num_of_atoms;
		  atom_cnt+= NUM_OF_THREADS_PER_BLOCK) {
660
661
662
663
664
665

		// Grid gradients were calculated in the grid space,
		// so they have to be put back in Angstrom.

		// Intramolecular gradients were already in Angstrom,
		// so no scaling for them is required.
666
667
668
		gradient_inter_x[atom_cnt] = native_divide(gradient_inter_x[atom_cnt], dockpars_grid_spacing);
		gradient_inter_y[atom_cnt] = native_divide(gradient_inter_y[atom_cnt], dockpars_grid_spacing);
		gradient_inter_z[atom_cnt] = native_divide(gradient_inter_z[atom_cnt], dockpars_grid_spacing);
669

670
671
672
		gradient_x[atom_cnt] = gradient_inter_x[atom_cnt] + gradient_intra_x[atom_cnt];
		gradient_y[atom_cnt] = gradient_inter_y[atom_cnt] + gradient_intra_y[atom_cnt];
		gradient_z[atom_cnt] = gradient_inter_z[atom_cnt] + gradient_intra_z[atom_cnt];
673
	
674
		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_grid", atom_cnt, gradient_inter_x[atom_cnt], gradient_inter_y[atom_cnt], gradient_inter_z[atom_cnt]);
675
676
677
678
679

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "grad_intra", atom_cnt, gradient_intra_x[atom_cnt], gradient_intra_y[atom_cnt], gradient_intra_z[atom_cnt]);

		//printf("%-15s %-5u %-10.8f %-10.8f %-10.8f\n", "calc_coords", atom_cnt, calc_coords_x[atom_cnt], calc_coords_y[atom_cnt], calc_coords_z[atom_cnt]);

680
681
	}

682
683
	barrier(CLK_LOCAL_MEM_FENCE);

684
	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
685
	// Obtaining translation-related gradients
686
687
688
689
690
	// ------------------------------------------
	if (get_local_id(0) == 0) {
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
691
692
693
			gradient_genotype[0] += gradient_x[lig_atom_id]; // gradient for gene 0: gene x
			gradient_genotype[1] += gradient_y[lig_atom_id]; // gradient for gene 1: gene y
			gradient_genotype[2] += gradient_z[lig_atom_id]; // gradient for gene 2: gene z
694
		}
695

696
697
698
699
700
701
702
703
704
		// Scaling gradient for translational genes as 
		// their corresponding gradients were calculated in the space 
		// where these genes are in Angstrom,
		// but OCLaDock translational genes are within in grids
		gradient_genotype[0] *= dockpars_grid_spacing;
		gradient_genotype[1] *= dockpars_grid_spacing;
		gradient_genotype[2] *= dockpars_grid_spacing;

		#if defined (DEBUG_GRAD_TRANSLATION_GENES)
705
706
707
		printf("gradient_x:%f\n", gradient_genotype [0]);
		printf("gradient_y:%f\n", gradient_genotype [1]);
		printf("gradient_z:%f\n", gradient_genotype [2]);
708
		#endif
709
710
711
	}

	// ------------------------------------------
Leonardo Solis's avatar
Leonardo Solis committed
712
713
	// Obtaining rotation-related gradients
	// ------------------------------------------ 
714
715
716
717
718
719
720
721
722
723
724
				
	// Transform gradients_inter_{x|y|z} 
	// into local_gradients[i] (with four quaternion genes)
	// Derived from autodockdev/motions.py/forces_to_delta_genes()

	// Transform local_gradients[i] (with four quaternion genes)
	// into local_gradients[i] (with three Shoemake genes)
	// Derived from autodockdev/motions.py/_get_cube3_gradient()
	// ------------------------------------------
	if (get_local_id(0) == 1) {

725
726
727
728
		float3 torque_rot;
		torque_rot.x = 0.0f;
		torque_rot.y = 0.0f;
		torque_rot.z = 0.0f;
729

730
		#if defined (DEBUG_GRAD_ROTATION_GENES)
731
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "initial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
732
		#endif
733

734
		// Declaring a variable to hold the center of rotation 
735
736
		// In getparameters.cpp, it indicates 
		// translation genes are in grid spacing (instead of Angstroms)
Leonardo Solis's avatar
Leonardo Solis committed
737
		float3 about;
738
739
740
		about.x = genotype[0];
		about.y = genotype[1];
		about.z = genotype[2];
741
	
742
743
744
		// Temporal variable to calculate translation differences.
		// They are converted back to Angstroms here
		float3 r;
745
			
746
747
748
		for (uint lig_atom_id = 0;
			  lig_atom_id<dockpars_num_of_atoms;
			  lig_atom_id++) {
Leonardo Solis's avatar
Leonardo Solis committed
749
750
751
			r.x = (calc_coords_x[lig_atom_id] - about.x) * dockpars_grid_spacing; 
			r.y = (calc_coords_y[lig_atom_id] - about.y) * dockpars_grid_spacing;  
			r.z = (calc_coords_z[lig_atom_id] - about.z) * dockpars_grid_spacing; 
752

753
754
755
756
757
			float3 force;
			force.x	= gradient_x[lig_atom_id];
			force.y	= gradient_y[lig_atom_id]; 
			force.z	= gradient_z[lig_atom_id];

758
			torque_rot += cross(r, force);
759
760

			#if defined (DEBUG_GRAD_ROTATION_GENES)
761
762
763
764
765
			printf("%-20s %-10u\n", "contrib. of atom-id: ", lig_atom_id);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "r             : ", r.x, r.y, r.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "force         : ", force.x, force.y, force.z);
			printf("%-20s %-10.5f %-10.5f %-10.5f\n", "partial torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
			printf("\n");
766
			#endif
767
		}
768

769
		#if defined (DEBUG_GRAD_ROTATION_GENES)
770
		printf("%-20s %-10.5f %-10.5f %-10.5f\n", "final torque: ", torque_rot.x, torque_rot.y, torque_rot.z);
771
		#endif
772
773
774

		// Derived from rotation.py/axisangle_to_q()
		// genes[3:7] = rotation.axisangle_to_q(torque, rad)
775
		float torque_length = fast_length(torque_rot);
776
777
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
778
		printf("%-20s %-10.5f\n", "torque length: ", torque_length);
779
		#endif
780

781
		// Infinitesimal rotation in radians
782
		const float infinitesimal_radian = 1E-5;
783
784
785
786
787
788
789
790

		// Finding the quaternion that performs
		// the infinitesimal rotation around torque axis
		float4 quat_torque;
		quat_torque.w = native_cos(infinitesimal_radian*0.5f);
		quat_torque.x = fast_normalize(torque_rot).x * native_sin(infinitesimal_radian*0.5f);
		quat_torque.y = fast_normalize(torque_rot).y * native_sin(infinitesimal_radian*0.5f);
		quat_torque.z = fast_normalize(torque_rot).z * native_sin(infinitesimal_radian*0.5f);
791
792

		#if defined (DEBUG_GRAD_ROTATION_GENES)
793
		printf("%-20s %-10.5f %-10.5f %-10.5f %-10.5f\n", "quat_torque (w,x,y,z): ", quat_torque.w, quat_torque.x, quat_torque.y, quat_torque.z);
794
		#endif
795

Leonardo Solis's avatar
Leonardo Solis committed
796
		// Converting quaternion gradients into Shoemake gradients 
797
798
		// Derived from autodockdev/motion.py/_get_cube3_gradient

799
		// This is where we are in Shoemake space
800
801
802
803
		float current_u1, current_u2, current_u3;
		current_u1 = genotype[3]; // check very initial input Shoemake genes
		current_u2 = genotype[4];
		current_u3 = genotype[5];
804
805
		
		#if defined (DEBUG_GRAD_ROTATION_GENES)
806
		printf("%-30s %-10.5f %-10.5f %-10.5f\n", "current_u (1,2,3): ", genotype[3], genotype[4], genotype[5]);
807
		#endif		
808

Leonardo Solis's avatar
Leonardo Solis committed
809
		// This is where we are in quaternion space
810
		// current_q = cube3_to_quaternion(current_u)
811
812
813
814
815
		float4 current_q;
		current_q.w = native_sqrt(1-current_u1) * native_sin(PI_TIMES_2*current_u2);
		current_q.x = native_sqrt(1-current_u1) * native_cos(PI_TIMES_2*current_u2);
		current_q.y = native_sqrt(current_u1)   * native_sin(PI_TIMES_2*current_u3);
		current_q.z = native_sqrt(current_u1)   * native_cos(PI_TIMES_2*current_u3);
816
817

		#if defined (DEBUG_GRAD_ROTATION_GENES)
818
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "current_q (w,x,y,z): ", current_q.w, current_q.x, current_q.y, current_q.z);
819
		#endif
820

Leonardo Solis's avatar
Leonardo Solis committed
821
		// This is where we want to be in quaternion space
822
		float4 target_q;
823
824
825
826

		// target_q = rotation.q_mult(q, current_q)
		// Derived from autodockdev/rotation.py/q_mult()
		// In our terms means q_mult(quat_{w|x|y|z}, current_q{w|x|y|z})
827
828
829
830
		target_q.w = quat_torque.w*current_q.w - quat_torque.x*current_q.x - quat_torque.y*current_q.y - quat_torque.z*current_q.z;// w
		target_q.x = quat_torque.w*current_q.x + quat_torque.x*current_q.w + quat_torque.y*current_q.z - quat_torque.z*current_q.y;// x
		target_q.y = quat_torque.w*current_q.y + quat_torque.y*current_q.w + quat_torque.z*current_q.x - quat_torque.x*current_q.z;// y
		target_q.z = quat_torque.w*current_q.z + quat_torque.z*current_q.w + quat_torque.x*current_q.y - quat_torque.y*current_q.x;// z
831
		#if defined (DEBUG_GRAD_ROTATION_GENES)
832
		printf("%-30s %-10.8f %-10.8f %-10.8f %-10.8f\n", "target_q (w,x,y,z): ", target_q.w, target_q.x, target_q.y, target_q.z);
833
		#endif
834

835
		// This is where we want to be in Shoemake space
836
837
838
839
840
		float target_u1, target_u2, target_u3;

		// target_u = quaternion_to_cube3(target_q)
		// Derived from autodockdev/motions.py/quaternion_to_cube3()
		// In our terms means quaternion_to_cube3(target_q{w|x|y|z})
841
842
843
		target_u1 = target_q.y*target_q.y + target_q.z*target_q.z;
		target_u2 = atan2(target_q.w, target_q.x);
		target_u3 = atan2(target_q.y, target_q.z);
844
		
845
846
847
848
849
850
		if (target_u2 < 0.0f)       { target_u2 += PI_TIMES_2; }
		if (target_u2 > PI_TIMES_2) { target_u2 -= PI_TIMES_2; }
		if (target_u3 < 0.0f) 	    { target_u3 += PI_TIMES_2; }
		if (target_u3 > PI_TIMES_2) { target_u3 -= PI_TIMES_2; }

		#if defined (DEBUG_GRAD_ROTATION_GENES)
851
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "target_u (1,2,3) - after mapping: ", target_u1, target_u2, target_u3);
852
		#endif
853
854
855
856
857
858
859
860
		
   		// The infinitesimal rotation will produce an infinitesimal displacement
    		// in shoemake space. This is to guarantee that the direction of
    		// the displacement in shoemake space is not distorted.
    		// The correct amount of displacement in shoemake space is obtained
		// by multiplying the infinitesimal displacement by shoemake_scaling:
		float shoemake_scaling = torque_length / infinitesimal_radian;

Leonardo Solis's avatar
Leonardo Solis committed
861
		// Derivates in cube3
862
863
		// "current_u2" and "current_u3" are mapped into 
		// the same range [0, 2PI] of "target_u2" and "target_u3"
864
		float grad_u1, grad_u2, grad_u3;
865
		grad_u1 = shoemake_scaling * (target_u1 - current_u1);
866
867
		grad_u2 = shoemake_scaling * (target_u2 - current_u2 * PI_TIMES_2);
		grad_u3 = shoemake_scaling * (target_u3 - current_u3 * PI_TIMES_2);
868
869

		#if defined (DEBUG_GRAD_ROTATION_GENES)
870
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "grad_u (1,2,3) - before emp. scaling: ", grad_u1, grad_u2, grad_u3);
871
		#endif
872
			
Leonardo Solis's avatar
Leonardo Solis committed
873
		// Empirical scaling
874
		float temp_u1 = genotype[3];
875
			
876
		if ((0.0f < temp_u1) && (temp_u1 < 1.0f)){
877
			grad_u1 *= ((1.0f/temp_u1) + (1.0f/(1.0f-temp_u1)));
878
		}
879
880
		grad_u2 *= 4.0f * (1.0f-temp_u1);
		grad_u3 *= 4.0f * temp_u1;
881
882

		#if defined (DEBUG_GRAD_ROTATION_GENES)
883
		printf("%-30s %-10.8f %-10.8f %-10.8f\n", "grad_u (1,2,3) - after emp. scaling: ", grad_u1, grad_u2, grad_u3);
884
		#endif
885
		
886
887
888
889
		// Setting gradient rotation-related genotypes in cube3.
		// Scaling gradient for u2 and u3 genes as 
		// their corresponding gradients were calculated in the space where u2/3 are within [0, 2PI]
		// but OCLaDock u2/3 genes are within [0, 1]
890
		gradient_genotype[3] = grad_u1;
891
892
		gradient_genotype[4] = grad_u2 * PI_TIMES_2; 
		gradient_genotype[5] = grad_u3 * PI_TIMES_2;
893
894
	}

Leonardo Solis's avatar
Leonardo Solis committed
895
896
897
	// ------------------------------------------
	// Obtaining torsion-related gradients
	// ------------------------------------------
898
899
900
901
902
903
	if (get_local_id(0) == 2) {

		for (uint rotbond_id = 0;
			  rotbond_id < dockpars_num_of_genes-6;
			  rotbond_id ++) {

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
			// Querying ids of atoms belonging to the rotatable bond in question
			int atom1_id = rotbonds_const[2*rotbond_id];
			int atom2_id = rotbonds_const[2*rotbond_id+1];

			float3 atomRef_coords;
			atomRef_coords.x = calc_coords_x[atom1_id];
			atomRef_coords.y = calc_coords_y[atom1_id];
			atomRef_coords.z = calc_coords_z[atom1_id];

			#if defined (DEBUG_GRAD_TORSION_GENES)
			printf("%-15s %-10u\n", "rotbond_id: ", rotbond_id);
			printf("%-15s %-10i\n", "atom1_id: ", atom1_id);
			printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom1_coords: ", calc_coords_x[atom1_id], calc_coords_y[atom1_id], calc_coords_z[atom1_id]);
			printf("%-15s %-10i\n", "atom2_id: ", atom2_id);
			printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom2_coords: ", calc_coords_x[atom2_id], calc_coords_y[atom2_id], calc_coords_z[atom2_id]);
			printf("\n");
			#endif		

922
			float3 rotation_unitvec;
923
			/*
924
925
926
			rotation_unitvec.x = rotbonds_unit_vectors_const[3*rotbond_id];
			rotation_unitvec.y = rotbonds_unit_vectors_const[3*rotbond_id+1];
			rotation_unitvec.z = rotbonds_unit_vectors_const[3*rotbond_id+2];
927
928
929
930
931
932
			*/
			rotation_unitvec.x = calc_coords_x[atom2_id] - calc_coords_x[atom1_id];
			rotation_unitvec.y = calc_coords_y[atom2_id] - calc_coords_y[atom1_id];
			rotation_unitvec.z = calc_coords_z[atom2_id] - calc_coords_z[atom1_id];
			rotation_unitvec = fast_normalize(rotation_unitvec);

933
			// Torque of torsions
934
935
936
937
938
939
940
941
942
943
			float3 torque_tor;
			torque_tor.x = 0.0f;
			torque_tor.y = 0.0f;
			torque_tor.z = 0.0f;

			// Iterating over each ligand atom that rotates 
			// if the bond in question rotates
			for (uint rotable_atom_cnt = 0;
				  rotable_atom_cnt<num_rotating_atoms_per_rotbond_const[rotbond_id];
				  rotable_atom_cnt++) {
944

945
				uint lig_atom_id = rotbonds_atoms_const[MAX_NUM_OF_ATOMS*rotbond_id + rotable_atom_cnt];
946

Leonardo Solis's avatar
Leonardo Solis committed
947
				// Calculating torque on point "A" 
948
				// (could be any other point "B" along the rotation axis)
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
				float3 atom_coords;
				atom_coords.x = calc_coords_x[lig_atom_id];
				atom_coords.y = calc_coords_y[lig_atom_id];
				atom_coords.z = calc_coords_z[lig_atom_id];

				// Temporal variable to calculate translation differences.
				// They are converted back to Angstroms here
				float3 r;
				r.x = (atom_coords.x - atomRef_coords.x) * dockpars_grid_spacing;
				r.y = (atom_coords.y - atomRef_coords.y) * dockpars_grid_spacing;
				r.z = (atom_coords.z - atomRef_coords.z) * dockpars_grid_spacing;

				float3 atom_force;
				atom_force.x = gradient_x[lig_atom_id]; 
				atom_force.y = gradient_y[lig_atom_id];
				atom_force.z = gradient_z[lig_atom_id];

				torque_tor += cross(r, atom_force);

				#if defined (DEBUG_GRAD_TORSION_GENES)
				printf("\n");
Leonardo Solis's avatar
Leonardo Solis committed
970
				printf("%-15s %-10u\n", "rotable_atom_cnt: ", rotable_atom_cnt);
971
				printf("%-15s %-10u\n", "atom_id: ", lig_atom_id);
Leonardo Solis's avatar
Leonardo Solis committed
972
973
974
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom_coords: ", atom_coords.x, atom_coords.y, atom_coords.z);
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "r: ", r.x, r.y, r.z);
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "unitvec: ", rotation_unitvec.x, rotation_unitvec.y, rotation_unitvec.z);
975
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "atom_force: ", atom_force.x, atom_force.y, atom_force.z);
Leonardo Solis's avatar
Leonardo Solis committed
976
				printf("%-15s %-10.8f %-10.8f %-10.8f\n", "torque_tor: ", torque_tor.x, torque_tor.y, torque_tor.z);
977
				#endif
978
979

			}
980
981
982
			#if defined (DEBUG_GRAD_TORSION_GENES)
			printf("\n");
			#endif
983

984
			// Projecting torque on rotation axis
985
986
987
			float torque_on_axis = dot(rotation_unitvec, torque_tor);

			// Assignment of gene-based gradient
Leonardo Solis's avatar
Leonardo Solis committed
988
			gradient_genotype[rotbond_id+6] = torque_on_axis * (M_PI / 180.0f);
989

990
991
992
			#if defined (DEBUG_GRAD_TORSION_GENES)
			printf("gradient_torsion [%u] :%f\n", rotbond_id+6, gradient_genotype [rotbond_id+6]);
			#endif
993
			
994
		} // End of iterations over rotatable bonds
995
996
997
	}

}